| | | | Lesson Plan | |------------|--|--|--| | | Discipline:
ETC | Semester-4th
Summer-2022 | Name of the Teachng Faculty: Rabindra kumar satapathy (Lecture ETC Engg) | | SI.
No. | Subject-Th-4
ANALOG
ELECTRONICS &
LINEAR IC | No. Of
Days/Week
class
alloted:05 | Semester From date: 14.03.2022 To date: 10.06.2022
No of weeks: 15 | | | Weeks/Months | Class Day | Topic | | | | 1st | 1.1 Working principle, of Diode & its current equation, Specification anduse of p-n junction diode. | | | 3rd week of march | 2nd | 1.2 Breakdown of diode (Avlance&Zener Breakdown) and Construction, working, Characteristics | | 1 | | 3rd | 1.3 Classification of Rectifiers and working of different types of Rectifiers-
Half-Wave Rectifier, Full-Wave Rectifier (CT & BRIDGE type) | | | At West 2 year | 4th | 1.4 Working principle of p-n-p and n-p-n transistor, different types of transistor connection (CB, CE and CC)& input and output characteristics of transistor in different connections. | | | 4th week of march | 1st | 1.5 Define ALPHA, BETA and GAMMA of transistors in various modes. Establish the Mathematical relationship between them. | | | | 2nd | 1.6 Basic concept of Biasing, Types of Biasing,h-parameter model of BJT,load line (AC &DC) and determine the Q-point. | | 2 | | 3rd | 1.7 Types of Coupling, working principle and use of R-C Coupled Amplifier & Frequency Responses of R-C coupled Amplifier & draw the curve. | | | | 4th | Unit-2: AUDIO POWER AMPLIFIERS.
2.1 Classify Power Amplifier & Differentiate between Voltage and Power
Amplifier. | | | | 1st | 2.2 Working principle of different types of Power Amplifier (Class-A, Class-AB, Class-B and Class-C & Class D amplifier). | | 3 | 5th week of march | 2nd | Unit-3: FIELD EFFECT TRANSISTOR (FET). 3.1 FET & its classifications & Differentiate between JFET & BJT. | | | | 3rd | 3.2 Construction, working principle & characteristics of JEFT & Explain JEFT as an amplifier, parameters of JFET & Establish relation among JFET parameters. | | | | 4th | 3.3 Construction & working principle MOSFET & its classification & characteristics (Drain & Transfer) | | 4 | 1st week of april | 1st | 3.4 Explain the operation of CMOS, VMOS & LDMOS. | | | | 2nd | 4.1 Define & classify Feedback Amplifier, principle of negative feedback with the heln of block diagram. Types of feedback – negative & nositive feedback. | | | 2nd week of april | 2nd | 4.2 Types of negative feedback – voltage shunt, voltage series, current shunt& current series and characteristics voltage gain, bandwidth, input Impedance output impedance, stability, noise, distortion in amplifiers. | | 5 | | 3rd | 4.3 Oscillator -block diagram of sine wave oscillator Types Requirement of oscillation-Barkhausen criterion | | | | 4th | 4.4 RC oscillators – RC phase shift ,Crystal, LC oscillators – Colpitts , Hartley & Wien Bridge Oscillators :Circuit operation, circuit diagram, equation for frequency of oscillation & frequency stability | |-----|-------------------|-----|--| | | 3rd week of april | 1st | Unit-5: TUNED AMPLIFIER & WAVE SHAPING CIRCUIT 5.1 Defined and classify Tuned amplifier, Explain parallel Resonant circuit, Resonance Curve & sharpness of Resonance. | | | | 2nd | 5.2 working principle of Single tuned Voltage& Double tuned Amplifier & its limitation | | 6 | | 3rd | 5.3 Different type of Non-linear circuits - Clipper, diode series & shunt, positive & negative biased & unbiased and combinational clipper clippers circuit & its application | | | | 4th | 5.4 Different type of Clamper circuit (positive & negative clampers) & its application. | | | 4th week of april | 1st | 5.5 Working of Astable, Monostable & BistableMultivibrator with circuit diagram. | | | | 2nd | 5.6 Working& use of Integrator and Differentiator circuit using R- C circuit(Linear), input / output waveforms & frequency response. | | 7 | | 3rd | Unit-6: OPERATIONAL AMPLIFIER CIRCUITS & FEEDBACK CONFIGURATIONS 6.1 Differential amplifier & explain its configuration & significance. | | | | 4th | 6.2 Block diagram representation of a typical Op- Amp, its equivalent circuits and draw the schematic symbol | | | 1st week of may | 1st | 6.3 Discuss the types of integrated circuits manufacturer's designations of ICs, Package types, pin identification and temperature and ordering information. | | | | 2nd | 6.4 Define the following electrical characteristics input offset voltage, input offset current, CMMR, Large signal voltage gain, Slew rate . | | 8 | | 3rd | 6.5 Draw and explain the Open Loop configuration (inverting, non-inverting Amplifier) | | | | 4th | 6.6 Draw the circuit diagram of the voltage series feedback amplifier and
derive the close loop Voltage gain, gain of feedback circuits input resistance,
and output resistance, bandwidth and total output offset voltage with
feedback | | | 2nd week of may | 1st | 6.7 Draw the circuit diagram of the voltage shunt feedback amplifier and
derive the close loop, Voltage gain, gain of feedback circuits and input
resistance, and output resistance, bandwidth and total output offset voltage
with feedback. | | 9 | | 2nd | Unit-7. APPLICATION OF OPERATIONAL AMPLIFIER, TIMER CIRCUITS& IC voltage regulator 7.1 Discuss the summing scaling and averaging of inverting and non-inverting amplifiers | | | | 3rd | 7.2 DC & AC Amplifies using OP-AMP | | | | 4th | 7.3 Integrator and differentiator using op-amp. | | | | 1st | 7.4 Active filter and describe the filter design of fast order low Pass Butterworth | | - 1 | | 2nd | 7.5 Concept of Zero-Crossing Detector using Op-Ampe | | | Jiu week of may | 3rd | 7.6 Block diagram and operation of IC 555 timer &IC 565 PLL& its applications. | |----|------------------------------------|-----|--| | | | 4th | 7.7 Working of Current to voltage Convertor using Operational Amplifier | | + | 4th Week of may | 1st | 7.8 Working of the Voltage to Frequency Convertor using Operational Amplifier. | | .1 | | 2nd | 7.9 Working of the Frequency to Voltage Conversion using Operational Amplifier. | | | | 3rd | 7.11 Functional block diagram & Working of IC regulator LM 723 & LM 317. | | | | 4th | 5.6 Working& use of Integrator and Differentiator circuit using N-C | | | 1st week of june | 1st | Unit-6: OPERATIONAL AMPLIFIER CIRCUITS & FEEDBACK CONFIGURATIONS 6.1 Differential amplifier & explain its configuration & significance. 7.9 Working of the Frequency to Voltage Conversion using Operational | | | | 2nd | 7.9 Working of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion asing a part of the Frequency to Voltage Conversion as a part of the Frequency to Voltage C | | 12 | | 3rd | t t the selectic symbol | | 12 | | 3rd | 6.3 Discuss the types of integrated circuits manufacturer's designations of ICs. Package types, pin identification and temperature and ordering | | | | 4th | 6.4 Define the following electrical characteristics input offset voltage, input offset current, CMMR, Large signal voltage gain, Slew rate. | | | 2nd week of june 3rd week of june | 1st | 6.5 Draw and explain the Open Loop configuration (inverting, non-inverting Amplifier) | | | | 2nd | 6.6 Draw the circuit diagram of the voltage series feedback amplifier and | | 13 | | 3rd | 6.7 Draw the circuit diagram of the voltage shuft feedback amplifier of the derive the close loop. Voltage gain, gain of feedback circuits and input | | | | 4th | 7.11 Functional block diagram & Working of IC regulator LM 723 & LM 317. | | | | | Unit-7. APPLICATION OF OPERATIONAL AMPLIFIER, TIMER CIRCUITS& IC voltage regulator | | | | 2nd | 7.2 DC & AC Amplifies using OP-AMP | | 14 | | 3rd | 7.3 Integrator and differentiator using op-amp. | | | | 4th | 7.3 Integrator and differentiator using op-amp. | | 1 | 3rd week of june | 1st | 7.7 Working of Current to voltage Convertor using Operational Amplifier | | | | 2nd | 7.8 Working of the Voltage to Frequency Convertor using Operational Amplifier. | | 15 | | 3rd | 7.9 Working of the Frequency to Voltage Conversion using Operational Amplifier. | | | | 4th | 7.11 Functional block diagram & Working of IC regulator LM 723 & LM 317. |