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UNIT I 

Control Systems - Introduction 

A control system is a system, which provides the desired response by controlling the output. 

The following figure shows the simple block diagram of a control system. 

 

 
Here, the control system is represented by a single block. Since, the output is controlled by 

varying input, the control system got this name. We will vary this input with some mechanism. 

In the next section on open loop and closed loop control systems, we will study in detail about 

the blocks inside the control system and how to vary this input in order to get the desired 

response. 

Examples − Traffic lights control system, washing machine 

Traffic lights control system is an example of control system. Here, a sequence of input signal 

is applied to this control system and the output is one of the three lights that will be on for some 

duration of time. During this time, the other two lights will be off. Based on the traffic study at 

a particular junction, the on and off times of the lights can be determined. Accordingly, the 

input signal controls the output. So, the traffic lights control system operates on time basis. 

Classification of Control Systems 

Based on some parameters, we can classify the control systems into the following ways. 

Continuous time and Discrete-time Control Systems 

 Control Systems can be classified as continuous time control systems and discrete time control systems based on 

the type of the signalused. 

 In continuous time control systems, all the signals are continuous in time. But, in discrete time control systems, there 

exists one or more discrete time signals. 

SISO and MIMO Control Systems 

 Control Systems can be classified as SISO control systems and MIMO control systems based on the number of inputs 

and outputspresent. 

 SISO (Single Input and Single Output) control systems have one input and one output. Whereas, MIMO (Multiple 

Inputs and Multiple Outputs) control systems have more than one input and more than one output. 

Open Loop and Closed Loop Control Systems 

Control Systems can be classified as open loop control systems and closed loop control systems 

based on the feedback path. 



In open loop control systems, output is not fed-back to the input. So, the control action is 

independent of the desired output. 

The following figure shows the block diagram of the open loop control system. 
 

 

Here, an input is applied to a controller and it produces an actuating signal or controlling signal. 

This signal is given as an input to a plant or process which is to be controlled. So, the plant 

produces an output, which is controlled. The traffic lights control system which we discussed 

earlier is an example of an open loop control system. 

In closed loop control systems, output is fed back to the input. So, the control action is 

dependent on the desired output. 

The following figure shows the block diagram of negative feedback closed loop control system. 
 

 

The error detector produces an error signal, which is the difference between the input and the 

feedback signal. This feedback signal is obtained from the block (feedback elements) by 

considering the output of the overall system as an input to this block. Instead of the direct input, 

the error signal is applied as an input to a controller. 

So, the controller produces an actuating signal which controls the plant. In this combination, the 

output of the control system is adjusted automatically till we get the desired response. Hence, 

the closed loop control systems are also called the automatic control systems. Traffic lights 

control system having sensor at the input is an example of a closed loop control system. 

The differences between the open loop and the closed loop control systems are mentioned in the 

following table. 
 

Open Loop Control Systems Closed Loop Control Systems 

Control action is independent of the desired output. Control action is dependent of the desired 

output. 



Feedback path is not present. Feedback path is present. 

These are also called as non-feedback control 

systems. 

These are also called as feedback control 

systems. 

Easy to design. Difficult to design. 

These are economical. These are costlier. 

Inaccurate. Accurate. 

Control Systems - Feedback 

If either the output or some part of the output is returned to the input side and utilized as part of 

the system input, then it is known as feedback. Feedback plays an important role in order to 

improve the performance of the control systems. In this chapter, let us discuss the types of 

feedback & effects of feedback. 

Types of Feedback 
There are two types of feedback − 

 
 Positive feedback 

 Negative feedback 

Positive Feedback 

The positive feedback adds the reference input, R(s) and feedback output. The following figure 

shows the block diagram of positive feedback control system. 

 
The concept of transfer function will be discussed in later chapters. For the time being, consider 

the transfer function of positive feedback control system is, 
 
 

 

Where, 

 T is the transfer function or overall gain of positive feedback control system. 

 G is the open loop gain, which is function of frequency. 



 H is the gain of feedback path, which is function of frequency. 

Negative Feedback 

Negative feedback reduces the error between the reference input, R(s) and system output. The 

following figure shows the block diagram of the negative feedback control system. 

 
Transfer function of negative feedback control system is, 

 

Where, 

 T is the transfer function or overall gain of negative feedback control system. 

 G is the open loop gain, which is function of frequency. 

 H is the gain of feedback path, which is function of frequency. 

The derivation of the above transfer function is present in later chapters. 

Effects of Feedback 
Let us now understand the effects of feedback. 

Effect of Feedback on Overall Gain 

 From Equation 2, we can say that the overall gain of negative feedback closed loop control system is the ratio of 'G' 

and (1+GH). So, the overall gain may increase or decrease depending on the value of (1+GH). 

 If the value of (1+GH) is less than 1, then the overall gain increases. In this case, 'GH' value is negative because the 

gain of the feedback path is negative. 

 If the value of (1+GH) is greater than 1, then the overall gain decreases. In this case, 'GH' value is positive because the 

gain of the feedback path is positive. 

In general, 'G' and 'H' are functions of frequency. So, the feedback will increase the overall gain 

of the system in one frequency range and decrease in the other frequency range. 

Effect of Feedback on Sensitivity 

Sensitivity of the overall gain of negative feedback closed loop control system (T) to the 

variation in open loop gain (G) is defined as 
 

Where, ∂T is the incremental change in T due to incremental change in G. 



We can rewrite Equation 3 as 
 

Do partial differentiation with respect to G on both sides of Equation 2. 
 

From Equation 2, you will get 
 

Substitute Equation 5 and Equation 6 in Equation 4. 
 

 

So, we got the sensitivity of the overall gain of closed loop control system as the reciprocal of 

(1+GH). So, Sensitivity may increase or decrease depending on the value of (1+GH). 

 If the value of (1+GH) is less than 1, then sensitivity increases. In this case, 'GH' value is negative because the gain of 

feedback path is negative. 

 If the value of (1+GH) is greater than 1, then sensitivity decreases. In this case, 'GH' value is positive because the gain 

of feedback path is positive. 

In general, 'G' and 'H' are functions of frequency. So, feedback will increase the sensitivity of 

the system gain in one frequency range and decrease in the other frequency range. Therefore, 

we have to choose the values of 'GH' in such a way that the system is insensitive or less 

sensitive to parameter variations. 

Effect of Feedback on Stability 

 A system is said to be stable, if its output is under control. Otherwise, it is said to be unstable. 

 In Equation 2, if the denominator value is zero (i.e., GH = -1), then the output of the control system will be infinite. So, 

the control system becomes unstable. 

Therefore, we have to properly choose the feedback in order to make the control system stable. 

Effect of Feedback on Noise 

To know the effect of feedback on noise, let us compare the transfer function relations with and 

without feedback due to noise signal alone. 

Consider an open loop control system with noise signal as shown below. 



 

 
 

 

The open loop transfer function due to noise signal alone is 
 

It is obtained by making the other input R(s) equal to zero. 

Consider a closed loop control system with noise signal as shown below. 
 

 

The closed loop transfer function due to noise signal alone is 

 

It is obtained by making the other input R(s) equal to zero. 

Compare Equation 7 and Equation 8, 

In the closed loop control system, the gain due to noise signal is decreased by a factor 

of (1+GaGbH) provided that the term (1+GaGbH) is greater than one. 

 

CONTROL SYSTEMS - MATHEMATICAL MODELS 

The   control systems can be   represented   with a   set   of mathematical equations known 

as mathematical model. These models are useful for analysis and design of control systems. 

Analysis of control system means finding the output when we know the input and mathematical 

model. Design of control system means finding the mathematical model when we know the 

input and the output. 

The following mathematical models are mostly used. 

 
 Differential equation model 

 Transfer function model 



 State space model 

Let us discuss the first two models in this chapter. 

Differential Equation Model 
Differential equation model is a time domain mathematical model of control systems. Follow 

these steps for differential equation model. 

 Apply basic laws to the given control system. 

 Get the differential equation in terms of input and output by eliminating the intermediate variable(s). 

Example 

Consider the following electrical system as shown in the following figure. This circuit consists 

of resistor, inductor and capacitor. All these electrical elements are connected in series. The 

input voltage applied to this circuit is vi and the voltage across the capacitor is the output 

voltage vo. 
 

 
Mesh equation for this circuit is 

 



Transfer Function Model 
Transfer function model is an s-domain mathematical model of control systems. The Transfer 

function of a Linear Time Invariant (LTI) system is defined as the ratio of Laplace transform of 

output and Laplace transform of input by assuming all the initial conditions are zero. 

If x(t) and y(t) are the input and output of an LTI system, then the corresponding Laplace 

transforms are X(s) and Y(s). 

Therefore, the transfer function of LTI system is equal to the ratio of Y(s) and X(s). 

i.e.,TransferFunction=Y(s)/X(s) 

The transfer function model of an LTI system is shown in the following figure. 

 

 

Here, we represented an LTI system with a block having transfer function inside it. And this 

block has an input X(s) & output Y(s). 

 

MODELLING OF MECHANICAL SYSTEMS 
In this chapter, let us discuss the differential equation modeling of mechanical systems. There 

are two types of mechanical systems based on the type of motion. 

 
 Translational mechanical systems 

 Rotational mechanical systems 

Modeling of Translational Mechanical Systems 

Translational mechanical systems move along a straight line. These systems mainly consist of 

three basic elements. Those are mass, spring and dashpot or damper. 

If a force is applied to a translational mechanical system, then it is opposed by opposing forces 

due to mass, elasticity and friction of the system. Since the applied force and the opposing 

forces are in opposite directions, the algebraic sum of the forces acting on the system is zero. 

Let us now see the force opposed by these three elements individually. 

Mass 

Mass is the property of a body, which stores kinetic energy. If a force is applied on a body 

having mass M, then it is opposed by an opposing force due to mass. This opposing force is 

proportional to the acceleration of the body. Assume elasticity and friction are negligible. 



 
 

Fm𝖺a 

⇒Fm=Ma=Md2x/dt2 

F=Fm=Md2/xdt2 

Where, 

 F is the applied force 

 Fm is the opposing force due to mass 

 M is mass 

 a is acceleration 

 x is displacement 

Spring 

Spring is an element, which stores potential energy. If a force is applied on spring K, then it is 

opposed by an opposing force due to elasticity of spring. This opposing force is proportional to 

the displacement of the spring. Assume mass and friction are negligible. 
 

 
F𝖺x 

⇒Fk=Kx 

F=Fk=Kx 

Where, 

 F is the applied force 

 Fk is the opposing force due to elasticity of spring 

 K is spring constant 

 x is displacement 

Dashpot 



If a force is applied on dashpot B, then it is opposed by an opposing force due to friction of the 

dashpot. This opposing force is proportional to the velocity of the body. Assume mass and 

elasticity are negligible. 
 

 
Fb𝖺ν 

⇒Fb=Bν=Bdx/dt 

F=Fb=Bdx/dt 

Where, 

 Fb is the opposing force due to friction of dashpot 

 B is the frictional coefficient 

 v is velocity 

 x is displacement 

 

 

 

 

 
Modeling of Rotational Mechanical Systems 

Rotational mechanical systems move about a fixed axis. These systems mainly consist of three 

basic elements. Those are moment of inertia, torsional spring and dashpot. 

If a torque is applied to a rotational mechanical system, then it is opposed by opposing torques 

due to moment of inertia, elasticity and friction of the system. Since the applied torque and the 

opposing torques are in opposite directions, the algebraic sum of torques acting on the system is 

zero. Let us now see the torque opposed by these three elements individually. 

Moment of Inertia 

In translational mechanical system, mass stores kinetic energy. Similarly, in rotational 

mechanical system, moment of inertia stores kinetic energy. 

If a torque is applied on a body having moment of inertia J, then it is opposed by an opposing 

torque due to the moment of inertia. This opposing torque is proportional to angular 

acceleration of the body. Assume elasticity and friction are negligible. 



 

 

 
 

 

Tj𝖺α 

⇒Tj=Jα=Jd2/θdt2 

T=Tj=Jd2/θdt2 

Where, 

 T is the applied torque 

 Tj is the opposing torque due to moment of inertia 

 J is moment of inertia 

 α is angular acceleration 

 θ is angular displacement 

Torsional Spring 

In translational mechanical system, spring stores potential energy. Similarly, in rotational 

mechanical system, torsional spring stores potential energy. 

If a torque is applied on torsional spring K, then it is opposed by an opposing torque due to the 

elasticity of torsional spring. This opposing torque is proportional to the angular displacement 

of the torsional spring. Assume that the moment of inertia and friction are negligible. 
 

 
Tk𝖺θ 

⇒Tk=Kθ 

T=Tk=Kθ 

Where, 

 T is the applied torque 

 Tk is the opposing torque due to elasticity of torsional spring 

 K is the torsional spring constant 



 θ is angular displacement 

Dashpot 

If a torque is applied on dashpot B, then it   is opposed by an opposing torque due to 

the rotational friction of the dashpot. This opposing torque is proportional to the angular 

velocity of the body. Assume the moment of inertia and elasticity are negligible. 
 

 
Tb𝖺ω 

⇒Tb=Bω=Bdθdt 

T=Tb=Bdθdt 

Where, 

 Tb is the opposing torque due to the rotational friction of the dashpot 

 B is the rotational friction coefficient 

 ω is the angular velocity 

 θ is the angular displacement 

Electrical Analogies of Mechanical Systems 

Two systems are said to be analogous to each other if the following two conditions are 

satisfied. 

 
 The two systems are physically different 

 Differential equation modelling of these two systems are same 

Electrical systems and mechanical systems are two physically different systems. There are two 

types of electrical analogies of translational mechanical systems. Those are force voltage 

analogy and force current analogy. 

Force Voltage Analogy 
In force voltage analogy, the mathematical equations of translational mechanical system are 

compared with mesh equations of the electrical system. 

Consider the following translational mechanical system as shown in the following figure. 



 
 

The force balanced equation for this system is 

F=Fm+Fb+Fk 

⇒F=Md2xdt2+Bdxdt+Kx (Equation 1) 

Consider the following electrical system as shown in the following figure. This circuit consists 

of a resistor, an inductor and a capacitor. All these electrical elements are connected in a series. 

The input voltage applied to this circuit is V volts and the current flowing through the circuit 

is i Amps. 
 

 
Mesh equation for this circuit is 

V=Ri+Ldidt+1c∫idt (Equation 2) 

Substitute, i=dqdt in Equation 2. 

V=Rdqdt+Ld2qdt2+qC 

⇒V=Ld2qdt2+Rdqdt+(1c)q (Equation 3) 

By comparing Equation 1 and Equation 3, we will get the analogous quantities of the 

translational mechanical system and electrical system. The following table shows these 

analogous quantities. 
 

Translational Mechanical System Electrical System 

Force(F) Voltage(V) 

Mass(M) Inductance(L) 

Frictional Coefficient(B) Resistance(R) 

Spring Constant(K) Reciprocal of Capacitance (1c) 



Displacement(x) Charge(q) 

Velocity(v) Current(i) 

Similarly, there is torque voltage analogy for rotational mechanical systems. Let us now discuss 

about this analogy. 

Torque Voltage Analogy 

In this analogy, the mathematical equations of rotational mechanical system are compared 

with mesh equations of the electrical system. 

Rotational mechanical system is shown in the following figure. 
 
 

 

 

The torque balanced equation is 

T=Tj+Tb+Tk 

⇒T=Jd2θdt2+Bdθdt+kθ (Equation 4) 

By comparing Equation 4 and Equation 3, we will get the analogous quantities of rotational 

mechanical system and electrical system. The following table shows these analogous quantities. 
 

Rotational Mechanical System Electrical System 

Torque(T) Voltage(V) 

Moment of Inertia(J) Inductance(L) 

Rotational friction coefficient(B) Resistance(R) 

Torsional spring constant(K) Reciprocal of Capacitance (1c) 

Angular Displacement(θ) Charge(q) 

Angular Velocity(ω) Current(i) 

Force Current Analogy 



In force current analogy, the mathematical equations of the translational mechanical 

system are compared with the nodal equations of the electrical system. 

Consider the following electrical system as shown in the following figure. This circuit consists 

of current source, resistor, inductor and capacitor. All these electrical elements are connected in 

parallel. 
 

 
The nodal equation is 

 

By comparing Equation 1 and Equation 6, we will get the analogous quantities of the 

translational mechanical system and electrical system. The following table shows these 

analogous quantities. 
 

Translational Mechanical System Electrical System 

Force(F) Current(i) 

Mass(M) Capacitance(C) 

Frictional coefficient(B) Reciprocal of Resistance(1R) 

Spring constant(K) Reciprocal of Inductance(1L) 

Displacement(x) Magnetic Flux(ψ) 



Velocity(v) Voltage(V) 

Similarly, there is a torque current analogy for rotational mechanical systems. Let us now 

discuss this analogy. 

Torque Current Analogy 

In this analogy, the mathematical equations of the rotational mechanical system are compared 

with the nodal mesh equations of the electrical system. 

By comparing Equation 4 and Equation 6, we will get the analogous quantities of rotational 

mechanical system and electrical system. The following table shows these analogous quantities. 
 

 

Rotational Mechanical System Electrical System 

Torque(T) Current(i) 

Moment of inertia(J) Capacitance(C) 

Rotational friction coefficient(B) Reciprocal of Resistance(1R) 

Torsional spring constant(K) Reciprocal of Inductance(1L) 

Angular displacement(θ) Magnetic flux(ψ) 

Angular velocity(ω) Voltage(V) 

In this chapter, we discussed the electrical analogies of the mechanical systems. These analogies 

are helpful to study and analyze the non-electrical system like mechanical system from 

analogous electrical system. 

 
 

CONTROL SYSTEMS - BLOCK DIAGRAMS 
Block diagrams consist of a single block or a combination of blocks. These are used to represent 

the control systems in pictorial form. 

Basic Elements of Block Diagram 



The basic elements of a block diagram are a block, the summing point and the take-off point. 

Let us consider the block diagram of a closed loop control system as shown in the following 

figure to identify these elements. 
 

 

The above block diagram consists of two blocks having transfer functions G(s) and H(s). It is 

also having one summing point and one take-off point. Arrows indicate the direction of the flow 

of signals. Let us now discuss these elements one by one. 

Block 

The transfer function of a component is represented by a block. Block has single input and 

single output. 

The following figure shows a block having input X(s), output Y(s) and the transfer function 

G(s). 

 

 
Transfer Function,G(s)=Y(s)X(s) 

⇒Y(s)=G(s)X(s) 

Output of the block is obtained by multiplying transfer function of the block with input. 

Summing Point 

The summing point is represented with a circle having cross (X) inside it. It has two or more 

inputs and single output. It produces the algebraic sum of the inputs. It also performs the 

summation or subtraction or combination of summation and subtraction of the inputs based on 

the polarity of the inputs. Let us see these three operations one by one. 

The following figure shows the summing point with two inputs (A, B) and one output (Y). 

Here, the inputs A and B have a positive sign. So, the summing point produces the output, Y 

as sum of A and B. 

i.e.,Y = A + B. 



 
 

The following figure shows the summing point with two inputs (A, B) and one output (Y). 

Here, the inputs A and B are having opposite signs, i.e., A is having positive sign and B is 

having negative sign. So, the summing point produces the output Y as the difference of A and 

B. 

Y = A + (-B) = A - B. 
 

 

The following figure shows the summing point with three inputs (A, B, C) and one output (Y). 

Here, the inputs A and B are having positive signs and C is having a negative sign. So, the 

summing point produces the output Y as 

Y = A + B + (−C) = A + B − C. 
 

 

Take-off Point 

The take-off point is a point from which the same input signal can be passed through more than 

one branch. That means with the help of take-off point, we can apply the same input to one or 

more blocks, summing points. 

In the following figure, the take-off point is used to connect the same input, R(s) to two more 

blocks. 



 
 

In the following figure, the take-off point is used to connect the output C(s), as one of the inputs 

to the summing point. 
 

 
Control Systems - Block Diagram Algebra 

Block diagram algebra is nothing but the algebra involved with the basic elements of the block 

diagram. This algebra deals with the pictorial representation of algebraic equations. 

Basic Connections for Blocks 
There are three basic types of connections between two blocks. 

Series Connection 

Series connection is also called cascade connection. In the following figure, two blocks having 

transfer functions G1(s) and G2(s) are connected in series. 

 
For this combination, we will get the output Y(s) as 

Y(s)=G2(s)Z(s) 

Where, Z(s)=G1(s)X(s) 

⇒Y(s)=G2(s)[G1(s)X(s)]=G1(s)G2(s)X(s) 

⇒Y(s)={G1(s)G2(s)}X(s) 

Compare this equation with the standard form of the output equation, Y(s)=G(s)X(s). 

Where, G(s)=G1(s)G2(s). 



That means we can represent the series connection of two blocks with a single block. The 

transfer function of this single block is the product of the transfer functions of those two 

blocks. The equivalent block diagram is shown below. 
 

 
Similarly, you can represent series connection of ‘n’ blocks with a single block. The transfer 

function of this single block is the product of the transfer functions of all those ‘n’ blocks. 

Parallel Connection 

The blocks which are connected in parallel will have the same input. In the following figure, 

two blocks having transfer functions G1(s) and G2(s) are connected in parallel. The outputs of 

these two blocks are connected to the summing point. 

 
For this combination, we will get the output Y(s) as 

Y(s)=Y1(s)+Y2(s) 

Where, Y1(s)=G1(s)X(s) and Y2(s)=G2(s)X(s) 

⇒Y(s)=G1(s)X(s)+G2(s)X(s)={G1(s)+G2(s)}X(s) 

Compare this equation with the standard form of the output equation, Y(s)=G(s)X(s). 

Where, G(s)=G1(s)+G2(s). 

That means we can represent the parallel connection of two blocks with a single block. The 

transfer function of this single block is the sum of the transfer functions of those two blocks. 

The equivalent block diagram is shown below. 
 

 
Similarly, you can represent parallel connection of ‘n’ blocks with a single block. The transfer 

function of this single block is the algebraic sum of the transfer functions of all those ‘n’ blocks. 

Feedback Connection 

As we discussed in previous chapters, there are two types of feedback — positive feedback and 

negative feedback. The following figure shows negative feedback control system. Here, two 

blocks having transfer functions G(s) and H(s) form a closed loop. 



 
 

The output of the summing point is - 

 

The output Y(s) is - 

 

E(s)=X(s)−H(s)Y(s) 

 
Y(s)=E(s)G(s) 

Substitute E(s) value in the above equation. 

Y(s)={X(s)−H(s)Y(s)}G(s)} 

Y(s){1+G(s)H(s)}=X(s)G(s)} 

⇒Y(s)X(s)=G(s)1+G(s)H(s) 

Therefore, the negative feedback closed loop transfer function is G(s)1+G(s)H(s) 

This means we can represent the negative feedback connection of two blocks with a single 

block. The transfer function of this single block is the closed loop transfer function of the 

negative feedback. The equivalent block diagram is shown below. 
 

 
Similarly, you can represent the positive feedback connection of two blocks with a single block. 

The transfer function of this single block is the closed loop transfer function of the positive 

feedback, i.e., G(s)1−G(s)H(s) 

 
Block Diagram Algebra for Summing Points 

There are two possibilities of shifting summing points with respect to blocks 

 
 Shifting summing point after the block 

 Shifting summing point before the block 

Let us now see what kind of arrangements need to be done in the above two cases one by one. 

Shifting Summing Point After the Block 

Consider the block diagram shown in the following figure. Here, the summing point is present 

before the block. 
 

Summing point has two inputs R(s) and X(s). The output of it is {R(s)+X(s)}. 



So, the input to the block G(s) is {R(s)+X(s)} and the output of it is – 

Y(s)=G(s){R(s)+X(s)} 

⇒Y(s)=G(s)R(s)+G(s)X(s) (Equation 1) 

Now, shift the summing point after the block. This block diagram is shown in the following 

figure. 

 

 

Output of the block G(s) is G(s)R(s). 

The output of the summing point is 

Y(s)=G(s)R(s)+X(s) (Equation 2) 

Compare Equation 1 and Equation 2. 

The first term ‘G(s)R(s)′ is same in both the equations. But, there is difference in the second 

term. In order to get the second term also same, we require one more block G(s). It is having the 

input X(s) and the output of this block is given as input to summing point instead of X(s). This 

block diagram is shown in the following figure. 

Shifting Summing Point Before the Block 

Consider the block diagram shown in the following figure. Here, the summing point is present 

after the block. 
 



Output of this block diagram is - 

Y(s)=G(s)R(s)+X(s) (Equation 3) 

Now, shift the summing point before the block. This block diagram is shown in the following 

figure. 
 

 

Output of this block diagram is - 

Y(S)=G(s)R(s)+G(s)X(s) (Equation 4) 

Compare Equation 3 and Equation 4, 

The first term ‘G(s)R(s)′ is same in both equations. But, there is difference in the second term. 

In order to get the second term also same, we require one more block 1G(s). It is having the 

input X(s) and the output of this block is given as input to summing point instead of X(s). This 

block diagram is shown in the following figure. 

 

 

 

 

 

 

 
 

Block Diagram Algebra for Take-off Points 

There are two possibilities of shifting the take-off points with respect to blocks − 

 
 Shifting take-off point after the block 

 Shifting take-off point before the block 

Let us now see what kind of arrangements are to be done in the above two cases, one by one. 

Shifting Take-off Point After the Block 

Consider the block diagram shown in the following figure. In this case, the take-off point is 

present before the block. 
 

 

Here, X(s)=R(s) and Y(s)=G(s)R(s) 



When you shift the take-off point after the block, the output Y(s) will be same. But, there is 

difference in X(s) value. So, in order to get the same X(s) value, we require one more 

block 1G(s). It is having the input Y(s) and the output is X(s). This block diagram is shown in the 

following figure. 

Shifting Take-off Point Before the Block 

Consider the block diagram shown in the following figure. Here, the take-off point is present 

after the block. 
 

Here, X(s)=Y(s)=G(s)R(s) 

When you shift the take-off point before the block, the output Y(s) will be same. But, there is 

difference in X(s) value. So, in order to get same X(s) value, we require one more block G(s). It 

is having the input R(s) and the output is X(s). This block diagram is shown in the following 

figure. 

 

Control Systems - Block Diagram Reduction 

The concepts discussed in the previous chapter are helpful for reducing (simplifying) the block 

diagrams. 

Block Diagram Reduction Rules 



Follow these rules for simplifying (reducing) the block diagram, which is having many blocks, 

summing points and take-off points. 

 Rule 1 − Check for the blocks connected in series and simplify. 

 Rule 2 − Check for the blocks connected in parallel and simplify. 

 Rule 3 − Check for the blocks connected in feedback loop and simplify. 

 Rule 4 − If there is difficulty with take-off point while simplifying, shift it towards right. 

 Rule 5 − If there is difficulty with summing point while simplifying, shift it towards left. 

 Rule 6 − Repeat the above steps till you get the simplified form, i.e., single block. 

Note − The transfer function present in this single block is the transfer function of the overall 

block diagram. 

Example 

Consider the block diagram shown in the following figure. Let us simplify (reduce) this block 

diagram using the block diagram reduction rules. 
 

 

Step 1 − Use Rule 1 for blocks G1 and G2. Use Rule 2 for blocks G3 and G4. The modified 

block diagram is shown in the following figure. 
 

 

Step 2 − Use Rule 3 for blocks G1G2 and H1. Use Rule 4 for shifting take-off point after the 

block G5. The modified block diagram is shown in the following figure. 



 
 

Step 3 − Use Rule 1 for blocks (G3+G4) and G5. The modified block diagram is shown in the 

following figure. 

 
 

Step 4 − Use Rule 3 for blocks (G3+G4)G5 and H3. The modified block diagram is shown in the 

following figure. 

 

Step 5 − Use Rule 1 for blocks connected in series. The modified block diagram is shown in the 

following figure. 

 

 
Step 6 − Use Rule 3 for blocks connected in feedback loop. The modified block diagram is 

shown in the following figure. This is the simplified block diagram. 



Therefore, the transfer function of the system is 

Y(s)R(s)=G1G2G25(G3+G4)(1+G1G2H1){1+(G3+G4)G5H3}G5−G1G2G5(G3+G4)H2 

Note − Follow these steps in order to calculate the transfer function of the block diagram having 

multiple inputs. 

 Step 1 − Find the transfer function of block diagram by considering one input at a time and make the remaining inputs 

as zero. 

 Step 2 − Repeat step 1 for remaining inputs. 

 Step 3 − Get the overall transfer function by adding all those transfer functions. 

The block diagram reduction process takes more time for complicated systems. Because, we 

have to draw the (partially simplified) block diagram after each step. So, to overcome this 

drawback, use signal flow graphs (representation). 

In the next two chapters, we will discuss about the concepts related to signal flow graphs, i.e., 

how to represent signal flow graph from a given block diagram and calculation of transfer 

function just by using a gain formula without doing any reduction process. 

Control Systems - Signal Flow Graphs 
Signal flow graph is a graphical representation of algebraic equations. In this chapter, let us 

discuss the basic concepts related signal flow graph and also learn how to draw signal flow 

graphs. 

Basic Elements of Signal Flow Graph 

Nodes and branches are the basic elements of signal flow graph. 

Node 

Node is a point which represents either a variable or a signal. There are three types of nodes — 

input node, output node and mixed node. 

 Input Node − It is a node, which has only outgoing branches. 

 Output Node − It is a node, which has only incoming branches. 

 Mixed Node − It is a node, which has both incoming and outgoing branches. 

Example 

Let us consider the following signal flow graph to identify these nodes. 



 

 
 

 

 The nodes present in this signal flow graph are y1, y2, y3 and y4. 

 y1 and y4 are the input node and output node respectively. 

 y2 and y3 are mixed nodes. 

Branch 

Branch is a line segment which joins two nodes. It has both gain and direction. For example, 

there are four branches in the above signal flow graph. These branches have gains of a, b, 

c and -d. 

 

 

Construction of Signal Flow Graph 

Let us construct a signal flow graph by considering the following algebraic equations − 

y2=a12y1+a42y4 

y3=a23y2+a53y5 

y4=a34y3 

y5=a45y4+a35y3 

y6=a56y5 

There will be six nodes (y1, y2, y3, y4, y5 and y6) and eight branches in this signal flow graph. 

The gains of the branches are a12, a23, a34, a45, a56, a42, a53 and a35. 

To get the overall signal flow graph, draw the signal flow graph for each equation, then 

combine all these signal flow graphs and then follow the steps given below − 

Step 1 − Signal flow graph for y2=a13y1+a42y4 is shown in the following figure. 
 

 
Step 2 − Signal flow graph for y3=a23y2+a53y5 is shown in the following figure. 



 

 
 

Step 3 − Signal flow graph for y4=a34y3 is shown in the following figure. 

 
Step 4 − Signal flow graph for y5=a45y4+a35y3 is shown in the following figure. 

 
Step 5 − Signal flow graph for y6=a56y5 is shown in the following figure. 

 
Step 6 − Signal flow graph of overall system is shown in the following figure. 

 

 
Conversion of Block Diagrams into Signal Flow Graphs 

Follow these steps for converting a block diagram into its equivalent signal flow graph. 

 Represent all the signals, variables, summing points and take-off points of block diagram as nodes in signal flow 

graph. 

 Represent the blocks of block diagram as branches in signal flow graph. 

 Represent the transfer functions inside the blocks of block diagram as gains of the branches in signal flow graph. 



 Connect the nodes as per the block diagram. If there is connection between two nodes (but there is no block in 

between), then represent the gain of the branch as one. For example, between summing points, between summing 

point and takeoff point, between input and summing point, between take-off point and output. 

Example 

Let us convert the following block diagram into its equivalent signal flow graph. 
 

 
Represent the input signal R(s) and output signal C(s) of block diagram as input node R(s) and 

output node C(s) of signal flow graph. 

Just for reference, the remaining nodes (y1 to y9) are labelled in the block diagram. There are 

nine nodes other than input and output nodes. That is four nodes for four summing points, four 

nodes for four take-off points and one node for the variable between blocks G1 and G2. 

The following figure shows the equivalent signal flow graph. 
 

 
With the help of Mason’s gain formula (discussed in the next chapter), you can calculate the 

transfer function of this signal flow graph. This is the advantage of signal flow graphs. Here, we 

no need to simplify (reduce) the signal flow graphs for calculating the transfer function. 

Mason's Gain Formula 

Let us now discuss the Mason’s Gain Formula. Suppose there are ‘N’ forward paths in a signal 

flow graph. The gain between the input and the output nodes of a signal flow graph is nothing 

but the transfer function of the system. It can be calculated by using Mason’s gain formula. 

Mason’s gain formula is 



T=C(s)R(s)=ΣNi=1PiΔiΔ 

Where, 

 C(s) is the output node 

 R(s) is the input node 

 T is the transfer function or gain between R(s) and C(s) 

 Pi is the ith forward path gain 

Δ=1−(sumofallindividualloopgains) 

+(sumofgainproductsofallpossibletwonontouchingloops) 

−(sumofgainproductsofallpossiblethreenontouchingloops)+... 

Δi is obtained from Δ by removing the loops which are touching the i
th

 forward path. 

Consider the following signal flow graph in order to understand the basic terminology involved 

here. 
 

 

Path 

It is a traversal of branches from one node to any other node in the direction of branch arrows. It 

should not traverse any node more than once. 

Examples − y2→y3→y4→y5 and y5→y3→y2 

Forward Path 

The path that exists from the input node to the output node is known as forward path. 

Examples − y1→y2→y3→y4→y5→y6 and y1→y2→y3→y5→y6. 

Forward Path Gain 

It is obtained by calculating the product of all branch gains of the forward path. 

Examples − abcde is the forward path gain of y1→y2→y3→y4→y5→y6 and abge is the forward 

path gain of y1→y2→y3→y5→y6. 

Loop 

The path that starts from one node and ends at the same node is known as loop. Hence, it is a 

closed path. 

Examples − y2→y3→y2 and y3→y5→y3. 

Loop Gain 



It is obtained by calculating the product of all branch gains of a loop. 

Examples − bj is the loop gain of y2→y3→y2 and gh is the loop gain of y3→y5→y3. 

Non-touching Loops 

These are the loops, which should not have any common node. 

Examples − The loops, y2→y3→y2 and y4→y5→y4 are non-touching. 

Calculation of Transfer Function using Mason’s Gain Formula 

Let us consider the same signal flow graph for finding transfer function. 
 

 
 Number of forward paths, N = 2. 

 First forward path is - y1→y2→y3→y4→y5→y6. 

 First forward path gain, p1=abcde. 

 Second forward path is - y1→y2→y3→y5→y6. 

 Second forward path gain, p2=abge. 

 Number of individual loops, L = 5. 

 Loops are - y2→y3→y2, y3→y5→y3, y3→y4→y5→y3, y4→y5→y4and y5→y5. 

 Loop gains are - l1=bj, l2=gh, l3=cdh, l4=di and l5=f. 

 Number of two non-touching loops = 2. 

 First non-touching loops pair is - y2→y3→y2, y4→y5→y4. 

 Gain product of first non-touching loops pair, l1l4=bjdi 

 Second non-touching loops pair is - y2→y3→y2, y5→y5. 

 Gain product of second non-touching loops pair is - l1l5=bjf 

Higher number of (more than two) non-touching loops are not present in this signal flow graph. 

We know, 

Δ=1−(sumofallindividualloopgains) 

+(sumofgainproductsofallpossibletwonontouchingloops) 

−(sumofgainproductsofallpossiblethreenontouchingloops)+... 

Substitute the values in the above equation, 

Δ=1−(bj+gh+cdh+di+f)+(bjdi+bjf)−(0) 



⇒Δ=1−(bj+gh+cdh+di+f)+bjdi+bjf 

There is no loop which is non-touching to the first forward path. 

So, Δ1=1. 

Similarly, Δ2=1. Since, no loop which is non-touching to the second forward path. 

Substitute, N = 2 in Mason’s gain formula 

T=C(s)R(s)=Σ2i=1PiΔiΔ 

T=C(s)R(s)=P1Δ1+P2Δ2Δ 

Substitute all the necessary values in the above equation. 

T=C(s)R(s)=(abcde)1+(abge)11−(bj+gh+cdh+di+f)+bjdi+bjf 

⇒T=C(s)R(s)=(abcde)+(abge)1−(bj+gh+cdh+di+f)+bjdi+bjf 

Therefore, the transfer function is - 

T=C(s)R(s)=(abcde)+(abge)1−(bj+gh+cdh+di+f)+bjdi+bjf 

 
 

UNIT 2 

TIME RESPONSE ANALYSIS 
What is Time Response? 

If the output of control system for an input varies with respect to time, then it is called the time response of the control system. 

The time response consists of two parts. 

 

 Transient response 

 Steady state response 

The response of control system in time domain is shown in the following figure. 
 

 
Here, both the transient and the steady states are indicated in the figure. The responses corresponding to these states are known 

as transient and steady state responses. 

Mathematically, we can write the time response c(t) as 

c(t)=ctr(t)+css(t)c(t)=ctr(t)+css(t) 



Where, 

 
 ctr(t) is the transient response 

 css(t) is the steady state response 

Transient Response 

After applying input to the control system, output takes certain time to reach steady state. So, the output will be in transient state 

till it goes to a steady state. Therefore, the response of the control system during the transient state is known as transient 

response. 

The transient response will be zero for large values of ‘t’. Ideally, this value of ‘t’ is infinity and practically, it is five times 

constant. 

Mathematically, we can write it as 
 

limt→∞ctr(t)=0limt→∞ctr(t)=0 

 

Steady state Response 

The part of the time response that remains even after the transient response has zero value for large values of ‘t’ is known 

as steady state response. This means, the transient response will be zero even during the steady state. 

 

 

STANDARD TEST SIGNALS 

The standard test signals are impulse, step, ramp and parabolic. These signals are used to know the performance of the control 

systems using time response of the output. 

Unit Impulse Signal 

A unit impulse signal, δ(t) is defined as 

δ(t)=0δ(t)=0 for t≠0t≠0 

and ∫0+0−δ(t)dt=1∫0−0+δ(t)dt=1 

The following figure shows unit impulse signal. 
 

 

So, the unit impulse signal exists only at ‘t’ is equal to zero. The area of this signal under small interval of time around ‘t’ is 

equal to zero is one. The value of unit impulse signal is zero for all other values of ‘t’. 

Unit Step Signal 

A unit step signal, u(t) is defined as 

u(t)=1;t≥0u(t)=1;t≥0 



=0;t<0=0;t<0 

Following figure shows unit step signal. 
 

 
 

So, the unit step signal exists for all positive values of ‘t’ including zero. And its value is one during this interval. The value of 

the unit step signal is zero for all negative values of ‘t’. 

Unit Ramp Signal 

A unit ramp signal, r(t) is defined as 

r(t)=t;t≥0r(t)=t;t≥0 

 

=0;t<0=0;t<0 

We can write unit ramp signal, r(t)r(t) in terms of unit step signal, u(t)u(t) as 

r(t)=tu(t)r(t)=tu(t) 

 
Following figure shows unit ramp signal. 

 

 

So, the unit ramp signal exists for all positive values of ‘t’ including zero. And its value increases linearly with respect to ‘t’ 

during this interval. The value of unit ramp signal is zero for all negative values of ‘t’. 

Unit Parabolic Signal 

A unit parabolic signal, p(t) is defined as, 

p(t)=t22;t≥0p(t)=t22;t≥0 

 

=0;t<0=0;t<0 

We can write unit parabolic signal, p(t)p(t) in terms of the unit step signal, u(t)u(t)as, 

p(t)=t22u(t)p(t)=t22u(t) 

 
The following figure shows the unit parabolic signal. 



 

 

 

So, the unit parabolic signal exists for all the positive values of ‘t’ including zero. And its value increases non-linearly with 

respect to ‘t’ during this interval. The value of the unit parabolic signal is zero for all the negative values of ‘t’. 

Response of the First Order System 
In this chapter, let us discuss the time response of the first order system. Consider the following block diagram of the closed 

loop control system. Here, an open loop transfer function, 1sT1sT is connected with a unity negative feedback. 

 
 
 

We know that the transfer function of the closed loop control system has unity negative feedback as, 

C(s)R(s)=G(s)1+G(s)C(s)R(s)=G(s)1+G(s) 

 

Substitute, G(s)=1sTG(s)=1sT in the above equation. 

C(s)R(s)=1sT1+1sT=1sT+1C(s)R(s)=1sT1+1sT=1sT+1 

 
The power of s is one in the denominator term. Hence, the above transfer function is of the first order and the system is said to 

be the first order system. 

We can re-write the above equation as 
 

C(s)=(1sT+1)R(s)C(s)=(1sT+1)R(s) 

 

Where, 

 

 C(s) is the Laplace transform of the output signal c(t), 

 R(s) is the Laplace transform of the input signal r(t), and 

 T is the time constant. 

 
Follow these steps to get the response (output) of the first order system in the time domain. 

 Take the Laplace transform of the input signal r(t)r(t). 

 Consider the equation, C(s)=(1sT+1)R(s)C(s)=(1sT+1)R(s) 

 Substitute R(s)R(s) value in the above equation. 

 Do partial fractions of C(s)C(s) if required. 

 Apply inverse Laplace transform to C(s)C(s). 



In the previous chapter, we have seen the standard test signals like impulse, step, ramp and parabolic. Let us now find out the 

responses of the first order system for each input, one by one. The name of the response is given as per the name of the input 

signal. For example, the response of the system for an impulse input is called as impulse response. 

Step Response of First Order System 

Consider the unit step signal as an input to first order system. 

So, r(t)=u(t)r(t)=u(t) 

Apply Laplace transform on both the sides. 

R(s)=1sR(s)=1s 

 

Consider the equation, C(s)=(1sT+1)R(s)C(s)=(1sT+1)R(s) 

Substitute, R(s)=1sR(s)=1s in the above equation. 

C(s)=(1sT+1)(1s)=1s(sT+1)C(s)=(1sT+1)(1s)=1s(sT+1) 

 

Do partial fractions of C(s).  

C(s)=1s(sT+1)=As+BsT+1C(s)=1s(sT+1)=As+BsT+1 
 

⇒1s(sT+1)=A(sT+1)+Bss(sT+1)⇒1s(sT+1)=A(sT+1)+Bss(sT+1) 

 
On both the sides, the denominator term is the same. So, they will get cancelled by each other. Hence, equate the numerator 

terms. 

1=A(sT+1)+Bs1=A(sT+1)+Bs 

By equating the constant terms on both the sides, you will get A = 1. 

Substitute, A = 1 and equate the coefficient of the s terms on both the sides. 

0=T+B⇒B=−T0=T+B⇒B=−T 

 

Substitute, A = 1 and B = −T in partial fraction expansion of C(s)C(s). 

C(s)=1s−TsT+1=1s−TT(s+1T)C(s)=1s−TsT+1=1s−TT(s+1T) 

 

⇒C(s)=1s−1s+1T⇒C(s)=1s−1s+1T 

 
Apply inverse Laplace transform on both the sides. 

c(t)=(1−e−(tT))u(t)c(t)=(1−e−(tT))u(t) 

The unit step response, c(t) has both the transient and the steady state terms. 

The transient term in the unit step response is - 

ctr(t)=−e−(tT)u(t)ctr(t)=−e−(tT)u(t) 

 

The steady state term in the unit step response is -  

css(t)=u(t)css(t)=u(t) 



The following figure shows the unit step response. 

 

 

 
 

The value of the unit step response, c(t) is zero at t = 0 and for all negative values of t. It is gradually increasing from zero 

value and finally reaches to one in steady state. So, the steady state value depends on the magnitude of the input. 

Response of Second Order System 
In this chapter, let us discuss the time response of second order system. Consider the following block diagram of closed loop 

control system. Here, an open loop transfer function, ω2ns(s+2δωn)ωn2s(s+2δωn) is connected with a unity negative feedback. 

 
 

We know that the transfer function of the closed loop control system having unity negative feedback as 

 

 

 

The power of ‘s’ is two in the denominator term. Hence, the above transfer function is of the second order and the system is said 

to be the second order system. 

 
The characteristic equation is 



 

 

 
The roots of characteristic equation are - 

 
 The two roots are imaginary when δ = 0. 

 The two roots are real and equal when δ = 1. 

 The two roots are real but not equal when δ > 1. 

 The two roots are complex conjugate when 0 < δ < 1. 

 



 
 
 



 

 
 
 



 

 
 

 
 

 



 
 

Time Domain Specifications 
In this chapter, let us discuss the time domain specifications of the second order system. The step response of the second order 

system for the underdamped case is shown in the following figure. 

 

 

 

All the time domain specifications are represented in this figure. The response up to the settling time is known as transient 

response and the response after the settling time is known as steady state response. 

Delay Time 

It is the time required for the response to reach half of its final value from the zero instant. It is denoted by tdtd. 

Consider the step response of the second order system for t ≥ 0, when ‘δ’ lies between zero and one. 

 



 

 
The final value of the step response is one. 

Therefore, at t=tdt=td, the value of the step response will be 0.5. Substitute, these values in the above equation. 

 
By using linear approximation, you will get the delay time td as 

 

 

Rise Time 

It is the time required for the response to rise from 0% to 100% of its final value. This is applicable for the under-damped 

systems. For the over-damped systems, consider the duration from 10% to 90% of the final value. Rise time is denoted by tr. 

 
Substitute t1 and t2 values in the following equation of rise time, 

 

 
From above equation, we can conclude that the rise time trtr and the damped frequency ωdωd are inversely proportional to 

each other. 

Peak Time 

It is the time required for the response to reach the peak value for the first time. It is denoted by tptp. At t=tpt=tp, the first 

derivate of the response is zero. 

We know the step response of second order system for under-damped case is 



 

 
 
 

From the above equation, we can conclude that the peak time tptp and the damped frequency ωdωd are inversely proportional 

to each other. 

Peak Overshoot 

Peak overshoot Mp is defined as the deviation of the response at peak time from the final value of response. It is also called 

the maximum overshoot. 

Mathematically, we can write it as 
 
 

Mp=c(tp)−c(∞)Mp=c(tp)−c(∞) 

 

Where, 

 
c(tp) is the peak value of the response. 

 
c(∞) is the final (steady state) value of the response. 



 

 

Settling time 

It is the time required for the response to reach the steady state and stay within the specified 

tolerance bands around the final value. In general, the tolerance bands are 2% and 5%. The 

settling time is denoted by tsts. 

The settling time for 5% tolerance band is - 
 

 

 



 
 

Time 

domain 

specific 

ation 

Formula Substitution of values in Formula Final value 

Delay 

time 

td=1+0.7δωntd=1+0.7δωn td=1+0.7(0.5)2td=1+0.7(0.5)2 tdtd=0.675 

sec 

Rise 

time 

tr=π−θωdtr=π−θωd tr=π−(π3)1.732tr=π−(π3)1.732 trtr=1.207 

sec 

Peak 

time 

tp=πωdtp=πωd tp=π1.732tp=π1.732 tptp=1.813 

sec 

% 

Peak 

overs 

hoot 

%Mp=⎛𝗁⎜e−(δπ1−δ2√)⎞⎠⎟×100 

%%Mp=(e−(δπ1−δ2))×100% 

%Mp=⎛𝗁⎜e−(0.5π1−(0.5)2√)⎞⎠⎟×100% 

%Mp=(e−(0.5π1−(0.5)2))×100% 

%Mp%Mp 

=16.32% 

Settli 

ng 

time 

for 

2% 

tolera 

nce 

band 

ts=4δωnts=4δωn tS=4(0.5)(2)tS=4(0.5)(2) tsts=4 sec 

Control Systems - Steady State Errors 
The deviation of the output of control system from desired response during steady state is known as steady state error. It is 

represented as essess. We can find steady state error using the final value theorem as follows. 

ess=limt→∞e(t)=lims→0E(s)ess=limt→∞e(t)=lims→0E(s) 

 
Where, 

E(s) is the Laplace transform of the error signal, e(t)e(t) 

Let us discuss how to find steady state errors for unity feedback and non-unity feedback control systems one by one. 

Steady State Errors for Unity Feedback Systems 

Consider the following block diagram of closed loop control system, which is having unity negative feedback. 



 

 
 

 
 

 
 

 
 

Input signal Steady state error essess Error constant 

unit step signal 11+kp11+kp Kp=lims→0G(s)Kp=lims→0G(s) 

unit ramp signal 1Kv1Kv Kv=lims→0sG(s)Kv=lims→0sG(s) 



unit parabolic signal 1Ka1Ka Ka=lims→0s2G(s)Ka=lims→0s2G(s) 

Input signal Error constant Steady state error 

r1(t)=5u(t)r1(t)=5u(t) Kp=lims→0G(s)=∞Kp=lims→0G(s)=∞ ess1=51+kp=0ess1=51+kp=0 

r2(t)=2tu(t)r2(t)=2tu(t) Kv=lims→0sG(s)=∞Kv=lims→0sG(s)=∞ ess2=2Kv=0ess2=2Kv=0 

r3(t)=t22u(t)r3(t)=t22u(t) Ka=lims→0s2G(s)=1Ka=lims→0s2G(s)=1 ess3=1ka=1ess3=1ka=1 

We will get the overall steady state error, by adding the above three steady state errors. 

ess=ess1+ess2+ess3ess=ess1+ess2+ess3 

 

⇒ess=0+0+1=1⇒ess=0+0+1=1 

 

UNIT 3 

Stability 
Stability is an important concept. In this chapter, let us discuss the stability of system and types of systems based on stability. 

What is Stability? 

A system is said to be stable, if its output is under control. Otherwise, it is said to be unstable. A stable system produces a 

bounded output for a given bounded input. 

The following figure shows the response of a stable system. 
 

 
 

This is the response of first order control system for unit step input. This response has the values between 0 and 1. So, it is 

bounded output. We know that the unit step signal has the value of one for all positive values of tincluding zero. So, it is 

bounded input. Therefore, the first order control system is stable since both the input and the output are bounded. 

Types of Systems based on Stability 

We can classify the systems based on stability as follows. 

 
 Absolutely stable system 

 Conditionally stable system 

 Marginally stable system 

Absolutely Stable System 



If the system is stable for all the range of system component values, then it is known as the absolutely stable system. The open 

loop control system is absolutely stable if all the poles of the open loop transfer function present in left half of ‘s’ plane. 

Similarly, the closed loop control system is absolutely stable if all the poles of the closed loop transfer function present in the 

left half of the ‘s’ plane. 

Conditionally Stable System 

If the system is stable for a certain range of system component values, then it is known as conditionally stable system. 

 

Marginally Stable System 

If the system is stable by producing an output signal with constant amplitude and constant frequency of oscillations for bounded 

input, then it is known as marginally stable system. The open loop control system is marginally stable if any two poles of the 

open loop transfer function is present on the imaginary axis. Similarly, the closed loop control system is marginally stable if any 

two poles of the closed loop transfer function is present on the imaginary axis. 

Control Systems - Stability Analysis 
In this chapter, let us discuss the stability analysis in the ‘s’ domain using the RouthHurwitz stability criterion. In this criterion, 

we require the characteristic equation to find the stability of the closed loop control systems. 

Routh-Hurwitz Stability Criterion 

Routh-Hurwitz stability criterion is having one necessary condition and one sufficient condition for stability. If any control 

system doesn’t satisfy the necessary condition, then we can say that the control system is unstable. But, if the control system 

satisfies the necessary condition, then it may or may not be stable. So, the sufficient condition is helpful for knowing whether 

the control system is stable or not. 

Necessary Condition for Routh-Hurwitz Stability 

The necessary condition is that the coefficients of the characteristic polynomial should be positive. This implies that all the roots 

of the characteristic equation should have negative real parts. 

Consider the characteristic equation of the order ‘n’ is - 

a0sn+a1sn−1+a2sn−2+...+an−1s1+ans0=0a0sn+a1sn−1+a2sn−2+...+an−1s1+ans0=0 

 
Note that, there should not be any term missing in the nth order characteristic equation. This means that the nth order 

characteristic equation should not have any coefficient that is of zero value. 

Sufficient Condition for Routh-Hurwitz Stability 

The sufficient condition is that all the elements of the first column of the Routh array should have the same sign. This means 

that all the elements of the first column of the Routh array should be either positive or negative. 

Routh Array Method 

If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then the control system is stable. If at least one 

root of the characteristic equation exists to the right half of the ‘s’ plane, then the control system is unstable. So, we have to find 

the roots of the characteristic equation to know whether the control system is stable or unstable. But, it is difficult to find the 

roots of the characteristic equation as order increases. 



So, to overcome this problem there we have the Routh array method. In this method, there is no need to calculate the roots of 

the characteristic equation. First formulate the Routh table and find the number of the sign changes in the first column of the 

Routh table. The number of sign changes in the first column of the Routh table gives the number of roots of characteristic 

equation that exist in the right half of the ‘s’ plane and the control system is unstable. 

Follow this procedure for forming the Routh table. 
 

 Fill the first two rows of the Routh array with the coefficients of the characteristic polynomial as mentioned in the 

table below. Start with the coefficient of snsn and continue up to the coefficient of s0s0. 

 Fill the remaining rows of the Routh array with the elements as mentioned in the table below. Continue this process till 

you get the first column element of row s0s0 is anan. Here, anan is the coefficient of s0s0in the characteristic 

polynomial. 

Note − If any row elements of the Routh table have some common factor, then you can divide the row elements with that factor 

for the simplification will be easy. 

The following table shows the Routh array of the nth order characteristic polynomial. 

a0sn+a1sn−1+a2sn−2+...+an−1s1+ans0a0sn+a1sn−1+a2sn−2+...+an−1s1+ans0 

 

snsn a0a0 a2a2 a4a4 a6a 

6 

.. 

. 

.. 

. 

sn−1sn 

−1 

a1a1 a3a3 a5a5 a7a 

7 

.. 

. 

.. 

. 

sn−2sn 

−2 

b1=a1a2−a3a0a1b1=a1a2−a3 

a0a1 

b2=a1a4−a5a0a1b2=a1a4−a5a 

0a1 

b3=a1a6−a7a0a1b3=a1a6−a 

7a0a1 

... .. 

. 

.. 

. 

sn−3sn 

−3 

c1=b1a3−b2a1b1c1=b1a3−b 

2a1b1 

c2=b1a55−b3a1b1c2=b1a55−b 

3a1b1 

⋮⋮ 
   

⋮⋮ ⋮⋮ ⋮⋮ ⋮⋮ 
   

s1s1 ⋮⋮ ⋮⋮ 
    

s0s0 anan 
     

Example 

 
Let us find the stability of the control system having characteristic equation, 

s4+3s3+3s2+2s+1=0s4+3s3+3s2+2s+1=0 

 
Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. 

All the coefficients of the characteristic polynomial, s4+3s3+3s2+2s+1s4+3s3+3s2+2s+1are positive. So, the control 

system satisfies the necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 



s4s4 11 33 11 

s3s3 33 22 
 

s2s2 (3×3)−(2×1)3=73(3×3)−(2×1)3=73 (3×1)−(0×1)3=33=1(3×1)−(0×1)3=33=1 
 

s1s1 (73×2)−(1×3)73=57(73×2)−(1×3)73=57 
  

s0s0 11 
  

Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. 

 
All the elements of the first column of the Routh array are positive. There is no sign change in the first column of the Routh 

array. So, the control system is stable. 

Special Cases of Routh Array 

We may come across two types of situations, while forming the Routh table. It is difficult to complete the Routh table from 

these two situations. 

The two special cases are − 

 
 The first element of any row of the Routh array is zero. 

 All the elements of any row of the Routh array are zero. 

Let us now discuss how to overcome the difficulty in these two cases, one by one. 

 

First Element of any row of the Routh array is zero 

If any row of the Routh array contains only the first element as zero and at least one of the remaining elements have non-zero 

value, then replace the first element with a small positive integer, ϵϵ. And then continue the process of completing the Routh 

table. Now, find the number of sign changes in the first column of the Routh table by substituting ϵϵ tends to zero. 

Example 

 
Let us find the stability of the control system having characteristic equation, 

s4+2s3+s2+2s+1=0s4+2s3+s2+2s+1=0 

 
Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. 

All the coefficients of the characteristic polynomial, s4+2s3+s2+2s+1s4+2s3+s2+2s+1are positive. So, the control system 

satisfied the necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 
 

s4s4 11 11 11 

s3s3 2 1 2 1 
 

s2s2 (1×1)−(1×1)1=0(1×1)−(1×1)1=0 (1×1)−(0×1)1=1(1×1)−(0×1)1=1 
 



s1s1 
   

s0s0 
   

The row s3s3 elements have 2 as the common factor. So, all these elements are divided by 2. 

Special case (i) − Only the first element of row s2s2 is zero. So, replace it by ϵϵand continue the process of completing the 

Routh table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. 

As ϵϵ tends to zero, the Routh table becomes like this. 

 

 

 

 

 

 

 

 

 

 

There are two sign changes in the first column of Routh table. Hence, the control system is unstable. 

 

All the Elements of any row of the Routh array are zero 

In this case, follow these two steps − 

 

 Write the auxilary equation, A(s) of the row, which is just above the row of zeros. 

 Differentiate the auxiliary equation, A(s) with respect to s. Fill the row of zeros with these coefficients. 

 
Example 

 
Let us find the stability of the control system having characteristic equation, 

s5+3s4+s3+3s2+s+3=0s5+3s4+s3+3s2+s+3=0 

s4s4 1 1 1 

s3s3 1 1 
 

s2s2 ϵϵ 1 
 

s1s1 (ϵ×1)−(1×1)ϵ=ϵ−1ϵ(ϵ×1)−(1×1)ϵ=ϵ−1ϵ 
  

s0s0 1 
  

 

s4s4 1 1 1 

s3s3 1 1 
 

s2s2 0 1 
 

s1s1 -∞ 
  

s0s0 1 
  

 



Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. 

 
All the coefficients of the given characteristic polynomial are positive. So, the control system satisfied the necessary condition. 

 
Step 2 − Form the Routh array for the given characteristic polynomial. 

 

s5s5 1 1 1 

s4s4 3 1 3 1 3 1 

s3s3 (1×1)−(1×1)1=0(1×1)−(1×1)1=0 (1×1)−(1×1)1=0(1×1)−(1×1)1=0 
 

s2s2 
   

s1s1 
   

s0s0 
   

The row s4s4 elements have the common factor of 3. So, all these elements are divided by 3. 

Special case (ii) − All the elements of row s3s3 are zero. So, write the auxiliary equation, A(s) of the row s4s4. 

A(s)=s4+s2+1A(s)=s4+s2+1 

 
Differentiate the above equation with respect to s. 

dA(s)ds=4s3+2sdA(s)ds=4s3+2s 

 

Place these coefficients in row s3s3. 

s5s5 1 1 1 

s4s4 1 1 1 

s3s3 4 2 2 1 
 

s2s2 (2×1)−(1×1)2=0.5(2×1)−(1×1)2=0.5 (2×1)−(0×1)2=1(2×1)−(0×1)2=1 
 

s1s1 (0.5×1)−(1×2)0.5=−1.50.5=−3(0.5×1)−(1×2)0.5=−1.50.5=−3 
  

s0s0 1 
  

Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. 

 
There are two sign changes in the first column of Routh table. Hence, the control system is unstable. 

 
In the Routh-Hurwitz stability criterion, we can know whether the closed loop poles are in on left half of the ‘s’ plane or on the 

right half of the ‘s’ plane or on an imaginary axis. So, we can’t find the nature of the control system. To overcome this 

limitation, there is a technique known as the root locus. We will discuss this technique in the next two chapters. 



ROOT LOCUS 
In the root locus diagram, we can observe the path of the closed loop poles. Hence, we can identify the nature of the control 

system. In this technique, we will use an open loop transfer function to know the stability of the closed loop control system. 

Basics of Root Locus 

The Root locus is the locus of the roots of the characteristic equation by varying system gain K from zero to infinity. 

 
We know that, the characteristic equation of the closed loop control system is 

1+G(s)H(s)=01+G(s)H(s)=0 

 

We can represent G(s)H(s)G(s)H(s) as 

G(s)H(s)=KN(s)D(s)G(s)H(s)=KN(s)D(s) 

 
Where, 

 

 K represents the multiplying factor 

 N(s) represents the numerator term having (factored) nth order polynomial of ‘s’. 

 D(s) represents the denominator term having (factored) mth order polynomial of ‘s’. 

Substitute, G(s)H(s)G(s)H(s) value in the characteristic equation. 

1+kN(s)D(s)=01+kN(s)D(s)=0 

 

⇒D(s)+KN(s)=0⇒D(s)+KN(s)=0 

 
Case 1 − K = 0 

If K=0K=0, then D(s)=0D(s)=0. 

That means, the closed loop poles are equal to open loop poles when K is zero. 

 
Case 2 − K = ∞ 

 
Re-write the above characteristic equation as 

K(1K+N(s)D(s))=0⇒1K+N(s)D(s)=0K(1K+N(s)D(s))=0⇒1K+N(s)D(s)=0 

 

Substitute, K=∞K=∞ in the above equation. 

1∞+N(s)D(s)=0⇒N(s)D(s)=0⇒N(s)=01∞+N(s)D(s)=0⇒N(s)D(s)=0⇒N(s)=0 

 

If K=∞K=∞, then N(s)=0N(s)=0. It means the closed loop poles are equal to the open loop zeros when K is infinity. 

From above two cases, we can conclude that the root locus branches start at open loop poles and end at open loop zeros. 

Angle Condition and Magnitude Condition 

The points on the root locus branches satisfy the angle condition. So, the angle condition is used to know whether the point exist 

on root locus branch or not. We can find the value of K for the points on the root locus branches by using magnitude condition. 

So, we can use the magnitude condition for the points, and this satisfies the angle condition. 

Characteristic equation of closed loop control system is 



1+G(s)H(s)=01+G(s)H(s)=0 

 

⇒G(s)H(s)=−1+j0⇒G(s)H(s)=−1+j0 

 

The phase angle of G(s)H(s)G(s)H(s) is 

∠G(s)H(s)=tan−1(0−1)=(2n+1)π∠G(s)H(s)=tan−1(0−1)=(2n+1)π 

The angle condition is the point at which the angle of the open loop transfer function is an odd multiple of 1800. 

Magnitude of G(s)H(s)G(s)H(s) is - 

|G(s)H(s)|=(−1)2+02−−−−−−−−−√=1|G(s)H(s)|=(−1)2+02=1 

 
The magnitude condition is that the point (which satisfied the angle condition) at which the magnitude of the open loop transfer 

function is one. 

Construction of Root Locus 
The root locus is a graphical representation in s-domain and it is symmetrical about the real axis. Because the open loop poles 

and zeros exist in the s-domain having the values either as real or as complex conjugate pairs. In this chapter, let us discuss how 

to construct (draw) the root locus. 

Rules for Construction of Root Locus 

Follow these rules for constructing a root locus. 

 
Rule 1 − Locate the open loop poles and zeros in the ‘s’ plane. 

 
Rule 2 − Find the number of root locus branches. 

 
We know that the root locus branches start at the open loop poles and end at open loop zeros. So, the number of root locus 

branches N is equal to the number of finite open loop poles P or the number of finite open loop zeros Z, whichever is greater. 

Mathematically, we can write the number of root locus branches N as 

N=PN=P if P≥ZP≥Z 

N=ZN=Z if P<ZP<Z 

Rule 3 − Identify and draw the real axis root locus branches. 

 
If the angle of the open loop transfer function at a point is an odd multiple of 1800, then that point is on the root locus. If odd 

number of the open loop poles and zeros exist to the left side of a point on the real axis, then that point is on the root locus 

branch. Therefore, the branch of points which satisfies this condition is the real axis of the root locus branch. 

Rule 4 − Find the centroid and the angle of asymptotes. 

 If P=ZP=Z, then all the root locus branches start at finite open loop poles and end at finite open loop zeros. 

 If P>ZP>Z , then ZZ number of root locus branches start at finite open loop poles and end at finite open loop zeros 

and P−ZP−Z number of root locus branches start at finite open loop poles and end at infinite open loop zeros. 

 If P<ZP<Z , then P number of root locus branches start at finite open loop poles and end at finite open loop zeros 

and Z−PZ−P number of root locus branches start at infinite open loop poles and end at finite open loop zeros. 

So, some of the root locus branches approach infinity, when P≠ZP≠Z. Asymptotes give the direction of these root locus 

branches. The intersection point of asymptotes on the real axis is known as centroid. 



We can calculate the centroid α by using this formula, 

α=∑Realpartoffiniteopenlooppoles−∑RealpartoffiniteopenloopzerosP−Zα=∑Realpartoffiniteopenlooppoles−∑Realpartoffiniteo 

penloopzerosP−Z 

The formula for the angle of asymptotes θ is 

θ=(2q+1)1800P−Zθ=(2q+1)1800P−Z 

 

Where,  

q=0,1,2,....,(P−Z)−1q=0,1,2,. .. ,(P−Z)−1 

 

Rule 5 − Find the intersection points of root locus branches with an imaginary axis. 

 
We can calculate the point at which the root locus branch intersects the imaginary axis and the value of K at that point by using 

the Routh array method and special case (ii). 

 If all elements of any row of the Routh array are zero, then the root locus branch intersects the imaginary axis and 

vice-versa. 

 Identify the row in such a way that if we make the first element as zero, then the elements of the entire row are zero. 

Find the value of Kfor this combination. 

 Substitute this K value in the auxiliary equation. You will get the intersection point of the root locus branch with an 

imaginary axis. 

Rule 6 − Find Break-away and Break-in points. 

 

 If there exists a real axis root locus branch between two open loop poles, then there will be a break-away point in 

between these two open loop poles. 

 If there exists a real axis root locus branch between two open loop zeros, then there will be a break-in point in 

between these two open loop zeros. 

Note − Break-away and break-in points exist only on the real axis root locus branches. 

 
Follow these steps to find break-away and break-in points. 

 Write KK in terms of ss from the characteristic equation 1+G(s)H(s)=01+G(s)H(s)=0. 

 Differentiate KK with respect to s and make it equal to zero. Substitute these values of ss in the above equation. 

 The values of ss for which the KK value is positive are the break points. 

Rule 7 − Find the angle of departure and the angle of arrival. 

The Angle of departure and the angle of arrival can be calculated at complex conjugate open loop poles and complex conjugate 

open loop zeros respectively. 

The formula for the angle of departure ϕdϕd is 

ϕd=1800−ϕϕd=1800−ϕ 
 

The formula for the angle of arrival ϕaϕa is 

ϕa=1800+ϕϕa=1800+ϕ 



Where,  

ϕ=∑ϕP−∑ϕZϕ=∑ϕP−∑ϕZ 

 

Example 

Let us now draw the root locus of the control system having open loop transfer 

function, G(s)H(s)=Ks(s+1)(s+5)G(s)H(s)=Ks(s+1)(s+5) 

Step 1 − The given open loop transfer function has three poles at s=0,s=−1s=0,s=−1 and s=−5s=−5. It doesn’t have any 

zero. Therefore, the number of root locus branches is equal to the number of poles of the open loop transfer function. 

N=P=3N=P=3 

 
 

 

The three poles are located are shown in the above figure. The line segment between s=−1s=−1 and s=0s=0 is one branch of 

root locus on real axis. And the other branch of the root locus on the real axis is the line segment to the left of s=−5s=−5. 

Step 2 − We will get the values of the centroid and the angle of asymptotes by using the given formulae. 

Centroid α=−2α=−2 

The angle of asymptotes are θ=600,1800θ=600,1800 and 30003000. 

The centroid and three asymptotes are shown in the following figure. 



 
 

Step 3 − Since two asymptotes have the angles of 600600 and 30003000, two root locus branches intersect the imaginary 

axis. By using the Routh array method and special case(ii), the root locus branches intersects the imaginary axis at j5– 

√j5 and −j5–√−j5. 

There will be one break-away point on the real axis root locus branch between the poles s=−1s=−1 and s=0s=0. By 

following the procedure given for the calculation of break-away point, we will get it as s=−0.473s=−0.473. 

The root locus diagram for the given control system is shown in the following figure. 



 
 

In this way, you can draw the root locus diagram of any control system and observe the movement of poles of the closed loop 

transfer function. 

From the root locus diagrams, we can know the range of K values for different types of damping. 

 

Effects of Adding Open Loop Poles and Zeros on Root Locus 

The root locus can be shifted in ‘s’ plane by adding the open loop poles and the open loop zeros. 

 

 If we include a pole in the open loop transfer function, then some of root locus branches will move towards right half 

of ‘s’ plane. Because of this, the damping ratio δδ decreases. Which implies, damped frequency ωdωd increases and 

the time domain specifications like delay time tdtd, rise time trtr and peak time tptp decrease. But, it effects the 

system stability. 

 If we include a zero in the open loop transfer function, then some of root locus branches will move towards left half of 

‘s’ plane. So, it will increase the control system stability. In this case, the damping ratio δδincreases. Which implies, 

damped frequency ωdωd decreases and the time domain specifications like delay time tdtd, rise time trtr and peak 

time tptp increase. 

So, based on the requirement, we can include (add) the open loop poles or zeros to the transfer function. 

Frequency Response Analysis 
We have already discussed time response analysis of the control systems and the time domain specifications of the second order 

control systems. In this chapter, let us discuss the frequency response analysis of the control systems and the frequency domain 

specifications of the second order control systems. 



What is Frequency Response? 

The response of a system can be partitioned into both the transient response and the steady state response. We can find the 

transient response by using Fourier integrals. The steady state response of a system for an input sinusoidal signal is known as 

the frequency response. In this chapter, we will focus only on the steady state response. 

If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it produces the steady state output, 

which is also a sinusoidal signal. The input and output sinusoidal signals have the same frequency, but different amplitudes and 

phase angles. 

Let the input signal be − 
 

r(t)=Asin(ω0t)r(t)=Asin(ω0t) 

 

The open loop transfer function will be −  

G(s)=G(jω)G(s)=G(jω) 
 

We can represent G(jω)G(jω) in terms of magnitude and phase as shown below. 

G(jω)=|G(jω)|∠G(jω)G(jω)=|G(jω)|∠G(jω) 

 

Substitute, ω=ω0ω=ω0 in the above equation. 

G(jω0)=|G(jω0)|∠G(jω0)G(jω0)=|G(jω0)|∠G(jω0) 

 

The output signal is  

c(t)=A|G(jω0)|sin(ω0t+∠G(jω0))c(t)=A|G(jω0)|sin(ω0t+∠G(jω0)) 
 

 The amplitude of the output sinusoidal signal is obtained by multiplying the amplitude of the input sinusoidal signal 

and the magnitude of G(jω)G(jω) at ω=ω0ω=ω0. 

 The phase of the output sinusoidal signal is obtained by adding the phase of the input sinusoidal signal and the phase 

of G(jω)G(jω) at ω=ω0ω=ω0. 

Where, 
 

 A is the amplitude of the input sinusoidal signal. 

 ω0 is angular frequency of the input sinusoidal signal. 

We can write, angular frequency ω0ω0 as shown below. 

ω0=2πf0ω0=2πf0 

 

Here, f0f0 is the frequency of the input sinusoidal signal. Similarly, you can follow the same procedure for closed loop control 

system. 

Frequency Domain Specifications 

The frequency domain specifications are resonant peak, resonant frequency and bandwidth. 

 
Consider the transfer function of the second order closed loop control system as, 

T(s)=C(s)R(s)=ω2ns2+2δωns+ω2nT(s)=C(s)R(s)=ωn2s2+2δωns+ωn2 



Substitute, s=jωs=jω in the above equation. 

T(jω)=ω2n(jω)2+2δωn(jω)+ω2nT(jω)=ωn2(jω)2+2δωn(jω)+ωn2 

 

⇒T(jω)=ω2n−ω2+2jδωωn+ω2n=ω2nω2n(1−ω2ω2n+2jδωωn)⇒T(jω)=ωn2−ω2+2jδωωn+ωn2=ωn2ωn2(1−ω2ωn2+2jδω 

ωn) 

 

⇒T(jω)=1(1−ω2ω2n)+j(2δωωn)⇒T(jω)=1(1−ω2ωn2)+j(2δωωn) 

 

Let, ωωn=uωωn=u Substitute this value in the above equation. 

T(jω)=1(1−u2)+j(2δu)T(jω)=1(1−u2)+j(2δu) 

 

Magnitude of T(jω)T(jω) is - 

M=|T(jω)|=1(1−u2)2+(2δu)2−−−−−−−−−−−−−−√M=|T(jω)|=1(1−u2)2+(2δu)2 
 

Phase of T(jω)T(jω) is - 

∠T(jω)=−tan−1(2δu1−u2)∠T(jω)=−tan−1(2δu1−u2) 

 

Resonant Frequency 

It is the frequency at which the magnitude of the frequency response has peak value for the first time. It is denoted by ωrωr. 

At ω=ωrω=ωr, the first derivate of the magnitude of T(jω)T(jω) is zero. 

Differentiate MM with respect to uu. 

dMdu=−12[(1−u2)2+(2δu)2]−32[2(1−u2)(−2u)+2(2δu)(2δ)]dMdu=−12[(1−u2)2+(2δu)2]−32[2(1−u2)(−2u)+2(2δu)( 

2δ)] 

 

⇒dMdu=−12[(1−u2)2+(2δu)2]−32[4u(u2−1+2δ2)]⇒dMdu=−12[(1−u2)2+(2δu)2]−32[4u(u2−1+2δ2)] 

 

Substitute, u=uru=ur and dMdu==0dMdu==0 in the above equation. 

0=−12[(1−u2r)2+(2δur)2]−32[4ur(u2r−1+2δ2)]0=−12[(1−ur2)2+(2δur)2]−32[4ur(ur2−1+2δ2)] 

 

⇒4ur(u2r−1+2δ2)=0⇒4ur(ur2−1+2δ2)=0 

 

⇒u2r−1+2δ2=0⇒ur2−1+2δ2=0 

 

⇒u2r=1−2δ2⇒ur2=1−2δ2 

 

⇒ur=1−2δ2−−−−−−√⇒ur=1−2δ2 

 

Substitute, ur=ωrωnur=ωrωn in the above equation. 

ωrωn=1−2δ2−−−−−−√ωrωn=1−2δ2 

 

⇒ωr=ωn1−2δ2−−−−−−√⇒ωr=ωn1−2δ2 

 
Resonant Peak 

It is the peak (maximum) value of the magnitude of T(jω)T(jω). It is denoted by MrMr. 

At u=uru=ur, the Magnitude of T(jω)T(jω) is - 

Mr=1(1−u2r)2+(2δur)2−−−−−−−−−−−−−−−√Mr=1(1−ur2)2+(2δur)2 

 

Substitute, ur=1−2δ2−−−−−−√ur=1−2δ2 and 1−u2r=2δ21−ur2=2δ2 in the above equation. 



Mr=1(2δ2)2+(2δ1−2δ2−−−−−−√)2−−−−−−−−−−−−−−−−−−√Mr=1(2δ2)2+(2δ1−2δ2)2 

 

⇒Mr=12δ1−δ2−−−−−√⇒Mr=12δ1−δ2 

 
Resonant peak in frequency response corresponds to the peak overshoot in the time domain transient response for certain values 

of damping ratio δδ. So, the resonant peak and peak overshoot are correlated to each other. 

Bandwidth 

It is the range of frequencies over which, the magnitude of T(jω)T(jω) drops to 70.7% from its zero frequency value. 

At ω=0ω=0, the value of uu will be zero. 

Substitute, u=0u=0 in M. 

M=1(1−02)2+(2δ(0))2−−−−−−−−−−−−−−−−√=1M=1(1−02)2+(2δ(0))2=1 

 

Therefore, the magnitude of T(jω)T(jω) is one at ω=0ω=0. 

At 3-dB frequency, the magnitude of T(jω)T(jω) will be 70.7% of magnitude of T(jω)T(jω) at ω=0ω=0. 

i.e., at ω=ωB,M=0.707(1)=12√ω=ωB,M=0.707(1)=12 

⇒M=12–√=1(1−u2b)2+(2δub)2−−−−−−−−−−−−−−−√⇒M=12=1(1−ub2)2+(2δub)2 

 

⇒2=(1−u2b)2+(2δ)2u2b⇒2=(1−ub2)2+(2δ)2ub2 
 

Let, u2b=xub2=x 

⇒2=(1−x)2+(2δ)2x⇒2=(1−x)2+(2δ)2x 

 

⇒x2+(4δ2−2)x−1=0⇒x2+(4δ2−2)x−1=0 

 

⇒x=−(4δ2−2)±(4δ2−2)2+4−−−−−−−−−−−√2⇒x=−(4δ2−2)±(4δ2−2)2+42 

 

Consider only the positive value of x. 

x=1−2δ2+(2δ2−1)2+1−−−−−−−−−−−√x=1−2δ2+(2δ2−1)2+1 

 

⇒x=1−2δ2+(2−4δ2+4δ4)−−−−−−−−−−−−√⇒x=1−2δ2+(2−4δ2+4δ4) 

 

Substitute, x=u2b=ω2bω2nx=ub2=ωb2ωn2 

ω2bω2n=1−2δ2+(2−4δ2+4δ4)−−−−−−−−−−−−√ωb2ωn2=1−2δ2+(2−4δ2+4δ4) 

 

⇒ωb=ωn1−2δ2+(2−4δ2+4δ4)−−−−−−−−−−−−√−−−−−−−−−−−−−−−−−−−−−−√⇒ωb=ωn1−2δ2+(2−4δ2+4δ4) 

 

Bandwidth ωbωb in the frequency response is inversely proportional to the rise time trtr in the time domain transient response. 

Control Systems - Bode Plots 
The Bode plot or the Bode diagram consists of two plots − 

 
 Magnitude plot 

 Phase plot 

In both the plots, x-axis represents angular frequency (logarithmic scale). Whereas, yaxis represents the magnitude (linear scale) 

of open loop transfer function in the magnitude plot and the phase angle (linear scale) of the open loop transfer function in the 

phase plot. 



The magnitude of the open loop transfer function in dB is - 

M=20log|G(jω)H(jω)|M=20log|G(jω)H(jω)| 

 
The phase angle of the open loop transfer function in degrees is - 

ϕ=∠G(jω)H(jω)ϕ=∠G(jω)H(jω) 

 
Note − The base of logarithm is 10. 

Basic of Bode Plots 

The following table shows the slope, magnitude and the phase angle values of the terms present in the open loop transfer 

function. This data is useful while drawing the Bode plots. 

Type 

of 

term 

G(jω)H(jω) Slope(d 

B/dec) 

Magnitude (dB) Phase angle(degrees) 

Const 

ant 

KK 00 20logK20logK 00 

Zero 

at 

origin 

jωjω 2020 20logω20logω 9090 

‘n’ 

zeros 

at 

origin 

(jω)n(jω)n 20n20n 20nlogω20nlogω 90n90n 

Pole 

at 

origin 

1jω1jω −20−20 −20logω−20logω −90or270−90or270 

‘n’ 

poles 

at 

origin 

1(jω)n1(jω)n −20n−2 

0n 

−20nlogω−20nlogω −90nor270n−90nor2 

70n 

Simpl 

e zero 

1+jωr1+jωr 2020 0forω<1r0forω<1r 

20logωrforω>1r20logωrfor 

ω>1r 

0forω<1r0forω<1r 

90forω>1r90forω>1r 



Simpl 

e pole 

11+jωr11+jωr −20−20 0forω<1r0forω<1r 

−20logωrforω>1r−20logωrf 

orω>1r 

0forω<1r0forω<1r 

−90or270forω>1r−9 

0or270forω>1r 

Seco 

nd 

order 

deriv 

ative 

term 

ω2n(1−ω2ω2n+2jδωωn)ωn2(1 

−ω2ωn2+2jδωωn) 

4040 40logωnforω<ωn40logωnfor 

ω<ωn 

20log(2δω2n)forω=ωn20log 

(2δωn2)forω=ωn 

40logωforω>ωn40logωforω> 

ωn 

0forω<ωn0forω<ωn 

90forω=ωn90forω=ω 

n 

180forω>ωn180forω 

>ωn 

Seco 

nd 

order 

integr 

al 

term 

1ω2n(1−ω2ω2n+2jδωωn)1ωn2(1−ω 

2ωn2+2jδωωn) 

−40−40 −40logωnforω<ωn−40logωnf 

orω<ωn 

−20log(2δω2n)forω=ωn−20 

log(2δωn2)forω=ωn 

−40logωforω>ωn−40logωfor 

ω>ωn 

−0forω<ωn−0forω<ω 

n 

−90forω=ωn−90forω 

=ωn 

−180forω>ωn−180fo 

rω>ωn 

Consider the open loop transfer function G(s)H(s)=KG(s)H(s)=K. 

Magnitude M=20logKM=20logK dB 

Phase angle ϕ=0ϕ=0 degrees 

If K=1K=1, then magnitude is 0 dB. 

If K>1K>1, then magnitude will be positive. 

If K<1K<1, then magnitude will be negative. 

The following figure shows the corresponding Bode plot. 

 



 

 
 

 

The magnitude plot is a horizontal line, which is independent of frequency. The 0 dB line itself is the magnitude plot when the 

value of K is one. For the positive values of K, the horizontal line will shift 20logK20logK dB above the 0 dB line. For the 

negative values of K, the horizontal line will shift 20logK20logK dB below the 0 dB line. The Zero degrees line itself is the 

phase plot for all the positive values of K. 

Consider the open loop transfer function G(s)H(s)=sG(s)H(s)=s. 

Magnitude M=20logωM=20logω dB 

Phase angle ϕ=900ϕ=900 

At ω=0.1ω=0.1 rad/sec, the magnitude is -20 dB. 

At ω=1ω=1 rad/sec, the magnitude is 0 dB. 

At ω=10ω=10 rad/sec, the magnitude is 20 dB. 

The following figure shows the corresponding Bode plot. 

 
 



 
 

 

The magnitude plot is a line, which is having a slope of 20 dB/dec. This line started at ω=0.1ω=0.1 rad/sec having a 

magnitude of -20 dB and it continues on the same slope. It is touching 0 dB line at ω=1ω=1 rad/sec. In this case, the phase plot 

is 900 line. 

Consider the open loop transfer function G(s)H(s)=1+sτG(s)H(s)=1+sτ. 

Magnitude M=20log1+ω2τ2−−−−−−−√M=20log1+ω2τ2 dB 

Phase angle ϕ=tan−1ωτϕ=tan−1ωτ degrees 

For ω<1τω<1τ , the magnitude is 0 dB and phase angle is 0 degrees. 

For ω>1τω>1τ , the magnitude is 20logωτ20logωτ dB and phase angle is 900. 

The following figure shows the corresponding Bode plot. 

 



 

 
 

The magnitude plot is having magnitude of 0 dB upto ω=1τω=1τ rad/sec. From ω=1τω=1τ rad/sec, it is having a slope of 20 

dB/dec. In this case, the phase plot is having phase angle of 0 degrees up to ω=1τω=1τ rad/sec and from here, it is having 

phase angle of 900. This Bode plot is called the asymptotic Bode plot. 

As the magnitude and the phase plots are represented with straight lines, the Exact Bode plots resemble the asymptotic Bode 

plots. The only difference is that the Exact Bode plots will have simple curves instead of straight lines. 

Similarly, you can draw the Bode plots for other terms of the open loop transfer function which are given in the table. 

Control Systems - Construction of Bode Plots 
In this chapter, let us understand in detail how to construct (draw) Bode plots. 

Rules for Construction of Bode Plots 

Follow these rules while constructing a Bode plot. 

 

 Represent the open loop transfer function in the standard time constant form. 

 Substitute, s=jωs=jω in the above equation. 

 Find the corner frequencies and arrange them in ascending order. 

 Consider the starting frequency of the Bode plot as 1/10th of the minimum corner frequency or 0.1 rad/sec whichever is 

smaller value and draw the Bode plot upto 10 times maximum corner frequency. 

 Draw the magnitude plots for each term and combine these plots properly. 

 Draw the phase plots for each term and combine these plots properly. 

 
Note − The corner frequency is the frequency at which there is a change in the slope of the magnitude plot. 

 

Example 

Consider the open loop transfer function of a closed loop control system 

G(s)H(s)=10s(s+2)(s+5)G(s)H(s)=10s(s+2)(s+5) 

 
Let us convert this open loop transfer function into standard time constant form. 



G(s)H(s)=10s2(s2+1)5(s5+1)G(s)H(s)=10s2(s2+1)5(s5+1) 

 

⇒G(s)H(s)=s(1+s2)(1+s5)⇒G(s)H(s)=s(1+s2)(1+s5) 

 
So, we can draw the Bode plot in semi log sheet using the rules mentioned earlier. 

Stability Analysis using Bode Plots 

From the Bode plots, we can say whether the control system is stable, marginally stable or unstable based on the values of these 

parameters. 

 

 Gain cross over frequency and phase cross over frequency 

 Gain margin and phase margin 

Phase Cross over Frequency 

The frequency at which the phase plot is having the phase of -1800 is known as phase cross over frequency. It is denoted 

by ωpcωpc. The unit of phase cross over frequency is rad/sec. 

Gain Cross over Frequency 

The frequency at which the magnitude plot is having the magnitude of zero dB is known as gain cross over frequency. It is 

denoted by ωgcωgc. The unit of gain cross over frequency is rad/sec. 

The stability of the control system based on the relation between the phase cross over frequency and the gain cross over 

frequency is listed below. 

 If the phase cross over frequency ωpcωpc is greater than the gain cross over frequency ωgcωgc, then the control 

system is stable. 

 If the phase cross over frequency ωpcωpc is equal to the gain cross over frequency ωgcωgc, then the control system 

is marginally stable. 

 If the phase cross over frequency ωpcωpc is less than the gain cross over frequency ωgcωgc, then the control system 

is unstable. 

Gain Margin 

Gain margin GMGM is equal to negative of the magnitude in dB at phase cross over frequency. 

GM=20log(1Mpc)=20logMpcGM=20log(1Mpc)=20logMpc 

 

Where, MpcMpc is the magnitude at phase cross over frequency. The unit of gain margin (GM) is dB. 

Phase Margin 

The formula for phase margin PMPM is 

PM=1800+ϕgcPM=1800+ϕgc 

 

Where, ϕgcϕgc is the phase angle at gain cross over frequency. The unit of phase margin is degrees. 

The stability of the control system based on the relation between gain margin and phase margin is listed below. 

 If both the gain margin GMGM and the phase margin PMPM are positive, then the control system is stable. 

 If both the gain margin GMGM and the phase margin PMPM are equal to zero, then the control system 

is marginally stable. 

 If the gain margin GMGM and / or the phase margin PMPM are/is negative, then the control system is unstable. 



Control Systems - Polar Plots 
In the previous chapters, we discussed the Bode plots. There, we have two separate plots for both magnitude and phase as the 

function of frequency. Let us now discuss about polar plots. Polar plot is a plot which can be drawn between magnitude and 

phase. Here, the magnitudes are represented by normal values only. 

The polar form of G(jω)H(jω)G(jω)H(jω) is 

G(jω)H(jω)=|G(jω)H(jω)|∠G(jω)H(jω)G(jω)H(jω)=|G(jω)H(jω)|∠G(jω)H(jω) 

 

The Polar plot is a plot, which can be drawn between the magnitude and the phase angle of G(jω)H(jω)G(jω)H(jω) by 

varying ωω from zero to ∞. The polar graph sheet is shown in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
This graph sheet consists of concentric circles and radial lines. The concentric circles and the radial lines represent the 

magnitudes and phase angles respectively. These angles are represented by positive values in anti-clock wise direction. 

Similarly, we can represent angles with negative values in clockwise direction. For example, the angle 2700 in anti-clock wise 

direction is equal to the angle −900 in clockwise direction. 

Rules for Drawing Polar Plots 

Follow these rules for plotting the polar plots. 



 Substitute, s=jωs=jω in the open loop transfer function. 

 Write the expressions for magnitude and the phase of G(jω)H(jω)G(jω)H(jω). 

 Find the starting magnitude and the phase of G(jω)H(jω)G(jω)H(jω) by substituting ω=0ω=0. So, the polar plot 

starts with this magnitude and the phase angle. 

 Find the ending magnitude and the phase of G(jω)H(jω)G(jω)H(jω) by substituting ω=∞ω=∞. So, the polar plot 

ends with this magnitude and the phase angle. 

 Check whether the polar plot intersects the real axis, by making the imaginary term 

of G(jω)H(jω)G(jω)H(jω) equal to zero and find the value(s) of ωω. 

 Check whether the polar plot intersects the imaginary axis, by making real term of G(jω)H(jω)G(jω)H(jω) equal to 

zero and find the value(s) of ωω. 

 For drawing polar plot more clearly, find the magnitude and phase of G(jω)H(jω)G(jω)H(jω) by considering the 

other value(s) of ωω. 

Example 

Consider the open loop transfer function of a closed loop control system. 

G(s)H(s)=5s(s+1)(s+2)G(s)H(s)=5s(s+1)(s+2) 

 
Let us draw the polar plot for this control system using the above rules. 

Step 1 − Substitute, s=jωs=jω in the open loop transfer function. 

G(jω)H(jω)=5jω(jω+1)(jω+2)G(jω)H(jω)=5jω(jω+1)(jω+2) 

 
The magnitude of the open loop transfer function is 

M=5ω(ω2+1−−−−−√)(ω2+4−−−−−√)M=5ω(ω2+1)(ω2+4) 

 
The phase angle of the open loop transfer function is 

ϕ=−900−tan−1ω−tan−1ω2ϕ=−900−tan−1ω−tan−1ω2 

 

Step 2 − The following table shows the magnitude and the phase angle of the open loop transfer function at ω=0ω=0 rad/sec 

and ω=∞ω=∞ rad/sec. 

Frequency (rad/sec) Magnitude Phase angle(degrees) 

0 ∞ -90 or 270 

∞ 0 -270 or 90 

So, the polar plot starts at (∞,−900) and ends at (0,−2700). The first and the second terms within the brackets indicate the 

magnitude and phase angle respectively. 

Step 3 − Based on the starting and the ending polar co-ordinates, this polar plot will intersect the negative real axis. The phase 

angle corresponding to the negative real axis is −1800 or 1800. So, by equating the phase angle of the open loop transfer function 

to either −1800 or 1800, we will get the ωω value as 2–√2. 



By substituting ω=2–√ω=2 in the magnitude of the open loop transfer function, we will get M=0.83M=0.83. Therefore, 

the polar plot intersects the negative real axis when ω=2–√ω=2 and the polar coordinate is (0.83,−1800). 

So, we can draw the polar plot with the above information on the polar graph sheet. 

Control Systems - Nyquist Plots 
Nyquist plots are the continuation of polar plots for finding the stability of the closed loop control systems by varying ω from 

−∞ to ∞. That means, Nyquist plots are used to draw the complete frequency response of the open loop transfer function. 

Nyquist Stability Criterion 

The Nyquist stability criterion works on the principle of argument. It states that if there are P poles and Z zeros are enclosed 

by the ‘s’ plane closed path, then the corresponding G(s)H(s)G(s)H(s) plane must encircle the origin P−ZP−Ztimes. So, we 

can write the number of encirclements N as, 

N=P−ZN=P−Z 

 
 If the enclosed ‘s’   plane   closed   path   contains   only   poles,   then   the   direction   of   the   encirclement   in 

the G(s)H(s)G(s)H(s) plane will be opposite to the direction of the enclosed closed path in the ‘s’ plane. 

 If the enclosed ‘s’   plane   closed   path   contains   only   zeros,   then   the   direction   of   the   encirclement   in 

the G(s)H(s)G(s)H(s) plane will be in the same direction as that of the enclosed closed path in the ‘s’ plane. 

Let us now apply the principle of argument to the entire right half of the ‘s’ plane by selecting it as a closed path. This selected 

path is called the Nyquistcontour. 

We know that the closed loop control system is stable if all the poles of the closed loop transfer function are in the left half of 

the ‘s’ plane. So, the poles of the closed loop transfer function are nothing but the roots of the characteristic equation. As the 

order of the characteristic equation increases, it is difficult to find the roots. So, let us correlate these roots of the characteristic 

equation as follows. 

 The Poles of the characteristic equation are same as that of the poles of the open loop transfer function. 

 The zeros of the characteristic equation are same as that of the poles of the closed loop transfer function. 

We know that the open loop control system is stable if there is no open loop pole in the the right half of the ‘s’ plane. 

i.e.,P=0⇒N=−ZP=0⇒N=−Z 

We know that the closed loop control system is stable if there is no closed loop pole in the right half of the ‘s’ plane. 

i.e.,Z=0⇒N=PZ=0⇒N=P 

Nyquist stability criterion states the number of encirclements about the critical point (1+j0) must be equal to the poles of 

characteristic equation, which is nothing but the poles of the open loop transfer function in the right half of the ‘s’ plane. The 

shift in origin to (1+j0) gives the characteristic equation plane. 

Rules for Drawing Nyquist Plots 

Follow these rules for plotting the Nyquist plots. 

 Locate the poles and zeros of open loop transfer function G(s)H(s)G(s)H(s) in ‘s’ plane. 

 Draw the polar plot by varying ωω from zero to infinity. If pole or zero present at s = 0, then varying ωω from 0+ to 

infinity for drawing polar plot. 



 Draw the mirror image of above polar plot for values of ωω ranging from −∞ to zero (0− if any pole or zero present at 

s=0). 

 The number of infinite radius half circles will be equal to the number of poles or zeros at origin. The infinite radius 

half circle will start at the point where the mirror image of the polar plot ends. And this infinite radius half circle will 

end at the point where the polar plot starts. 

After drawing the Nyquist plot, we can find the stability of the closed loop control system using the Nyquist stability criterion. 

If the critical point (-1+j0) lies outside the encirclement, then the closed loop control system is absolutely stable. 

Stability Analysis using Nyquist Plots 

From the Nyquist plots, we can identify whether the control system is stable, marginally stable or unstable based on the values 

of these parameters. 

 

 Gain cross over frequency and phase cross over frequency 

 Gain margin and phase margin 

Phase Cross over Frequency 

The frequency at which the Nyquist plot intersects the negative real axis (phase angle is 1800) is known as the phase cross over 

frequency. It is denoted by ωpcωpc. 

Gain Cross over Frequency 

The frequency at which the Nyquist plot is having the magnitude of one is known as the gain cross over frequency. It is 

denoted by ωgcωgc. 

The stability of the control system based on the relation between phase cross over frequency and gain cross over frequency is 

listed below. 

 If the phase cross over frequency ωpcωpc is greater than the gain cross over frequency ωgcωgc, then the control 

system is stable. 

 If the phase cross over frequency ωpcωpc is equal to the gain cross over frequency ωgcωgc, then the control system 

is marginally stable. 

 If phase cross over frequency ωpcωpc is less than gain cross over frequency ωgcωgc, then the control system 

is unstable. 

Gain Margin 

The gain margin GMGM is equal to the reciprocal of the magnitude of the Nyquist plot at the phase cross over frequency. 

GM=1MpcGM=1Mpc 

 

Where, MpcMpc is the magnitude in normal scale at the phase cross over frequency. 

Phase Margin 

The phase margin PMPM is equal to the sum of 1800 and the phase angle at the gain cross over frequency. 

PM=1800+ϕgcPM=1800+ϕgc 

 

Where, ϕgcϕgc is the phase angle at the gain cross over frequency. 

The stability of the control system based on the relation between the gain margin and the phase margin is listed below. 



 If the gain margin GMGM is greater than one and the phase margin PMPMis positive, then the control system 

is stable. 

 If the gain margin GMGM is equal to one and the phase margin PMPM is zero degrees, then the control system 

is marginally stable. 

 If the gain margin GMGM is less than one and / or the phase margin PMPMis negative, then the control system 

is unstable. 

Control Systems - Compensators 
There are three types of compensators — lag, lead and lag-lead compensators. These are most commonly used. 

Lag Compensator 

The Lag Compensator is an electrical network which produces a sinusoidal output having the phase lag when a sinusoidal input 

is applied. The lag compensator circuit in the ‘s’ domain is shown in the following figure. 

 
 

 

 

Here, the capacitor is in series with the resistor R2R2 and the output is measured across this combination. 

The transfer function of this lag compensator is - 

Vo(s)Vi(s)=1α(s+1τs+1ατ)Vo(s)Vi(s)=1α(s+1τs+1ατ) 

 

Where, 

τ=R2Cτ=R2C 

α=R1+R2R2α=R1+R2R2 

From the above equation, αα is always greater than one. 

From the transfer function, we can conclude that the lag compensator has one pole at s=−1ατs=−1ατ and one zero 

at s=−1τs=−1τ . This means, the pole will be nearer to origin in the pole-zero configuration of the lag compensator. 

Substitute, s=jωs=jω in the transfer function. 

Vo(jω)Vi(jω)=1α(jω+1τjω+1ατ)Vo(jω)Vi(jω)=1α(jω+1τjω+1ατ) 



Phase angle ϕ=tan−1ωτ−tan−1αωτϕ=tan−1ωτ−tan−1αωτ 

We know that, the phase of the output sinusoidal signal is equal to the sum of the phase angles of input sinusoidal signal and the 

transfer function. 

So, in order to produce the phase lag at the output of this compensator, the phase angle of the transfer function should be 

negative. This will happen when α>1α>1. 

Lead Compensator 

The lead compensator is an electrical network which produces a sinusoidal output having phase lead when a sinusoidal input is 

applied. The lead compensator circuit in the ‘s’ domain is shown in the following figure. 

 

 

Here, the capacitor is parallel to the resistor R1R1 and the output is measured across resistor $R_2. 

The transfer function of this lead compensator is - 

Vo(s)Vi(s)=β(sτ+1βsτ+1)Vo(s)Vi(s)=β(sτ+1βsτ+1) 

 

Where, 

τ=R1Cτ=R1C 

β=R2R1+R2β=R2R1+R2 

From the transfer function, we can conclude that the lead compensator has pole at s=−1βs=−1β and zero at s=−1βτs=−1βτ. 

Substitute, s=jωs=jω in the transfer function. 

Vo(jω)Vi(jω)=β(jωτ+1βjωτ+1)Vo(jω)Vi(jω)=β(jωτ+1βjωτ+1) 

 

Phase angle ϕ=tan−1ωτ−tan−1βωτϕ=tan−1ωτ−tan−1βωτ 

We know that, the phase of the output sinusoidal signal is equal to the sum of the phase angles of input sinusoidal signal and the 

transfer function. 



So, in order to produce the phase lead at the output of this compensator, the phase angle of the transfer function should be 

positive. This will happen when 0<β<10<β<1. Therefore, zero will be nearer to origin in pole-zero configuration of the lead 

compensator. 

Lag-Lead Compensator 

Lag-Lead compensator is an electrical network which produces phase lag at one frequency region and phase lead at other 

frequency region. It is a combination of both the lag and the lead compensators. The lag-lead compensator circuit in the ‘s’ 

domain is shown in the following figure. 

 

 

 
This circuit looks like both the compensators are cascaded. So, the transfer function of this circuit will be the product of transfer 

functions of the lead and the lag compensators. 

Vo(s)Vi(s)=β(sτ1+1βsτ1+1)1α(s+1τ2s+1ατ2)Vo(s)Vi(s)=β(sτ1+1βsτ1+1)1α(s+1τ2s+1ατ2) 

 

We know αβ=1αβ=1. 

⇒Vo(s)Vi(s)=(s+1τ1s+1βτ1)(s+1τ2s+1ατ2)⇒Vo(s)Vi(s)=(s+1τ1s+1βτ1)(s+1τ2s+1ατ2) 

 

Where,  

τ1=R1C1τ1=R1C1 
 

τ2=R2C2τ2=R2C2 

 

Control Systems - Controllers 
The various types of controllers are used to improve the performance of control systems. In this chapter, we will discuss the 

basic controllers such as the proportional, the derivative and the integral controllers. 



Proportional Controller 

The proportional controller produces an output, which is proportional to error signal. 

u(t)𝖺e(t)u(t)𝖺e(t) 

 

⇒u(t)=KPe(t)⇒u(t)=KPe(t) 

 

Apply Laplace transform on both the sides - 

U(s)=KPE(s)U(s)=KPE(s) 

 

U(s)E(s)=KPU(s)E(s)=KP 
 

Therefore, the transfer function of the proportional controller is KPKP. 

Where, 

U(s) is the Laplace transform of the actuating signal u(t) 

E(s) is the Laplace transform of the error signal e(t) 

KP is the proportionality constant 

 
The block diagram of the unity negative feedback closed loop control system along with the proportional controller is shown in 

the following figure. 

 

 
 

The proportional controller is used to change the transient response as per the requirement. 

Derivative Controller 

The derivative controller produces an output, which is derivative of the error signal. 

u(t)=KDde(t)dtu(t)=KDde(t)dt 

 

Apply Laplace transform on both sides. 

U(s)=KDsE(s)U(s)=KDsE(s) 

 

U(s)E(s)=KDsU(s)E(s)=KDs 
 

Therefore, the transfer function of the derivative controller is KDsKDs. 



Where, KDKD is the derivative constant. 

The block diagram of the unity negative feedback closed loop control system along with the derivative controller is shown in 

the following figure. 

 
 

 

 
The derivative controller is used to make the unstable control system into a stable one. 

Integral Controller 

The integral controller produces an output, which is integral of the error signal. 

u(t)=KI∫e(t)dtu(t)=KI∫e(t)dt 

 

Apply Laplace transform on both the sides - 

U(s)=KIE(s)sU(s)=KIE(s)s 

 

U(s)E(s)=KIsU(s)E(s)=KIs 

 

Therefore, the transfer function of the integral controller is KIsKIs. 

Where, KIKI is the integral constant. 

The block diagram of the unity negative feedback closed loop control system along with the integral controller is shown in the 

following figure. 

 
 

 

 

 
The integral controller is used to decrease the steady state error. 



Let us now discuss about the combination of basic controllers. 

Proportional Derivative (PD) Controller 

The proportional derivative controller produces an output, which is the combination of the outputs of proportional and 

derivative controllers. 

u(t)=KPe(t)+KDde(t)dtu(t)=KPe(t)+KDde(t)dt 

 

Apply Laplace transform on both sides - 

U(s)=(KP+KDs)E(s)U(s)=(KP+KDs)E(s) 

U(s)E(s)=KP+KDsU(s)E(s)=KP+KDs 

Therefore, the transfer function of the proportional derivative controller is KP+KDsKP+KDs. 

The block diagram of the unity negative feedback closed loop control system along with the proportional derivative controller is 

shown in the following figure. 

 

 

 
The proportional derivative controller is used to improve the stability of control system without affecting the steady state error. 

Proportional Integral (PI) Controller 

The proportional integral controller produces an output, which is the combination of outputs of the proportional and integral 

controllers. 

u(t)=KPe(t)+KI∫e(t)dtu(t)=KPe(t)+KI∫e(t)dt 

 

Apply Laplace transform on both sides -  

U(s)=(KP+KIs)E(s)U(s)=(KP+KIs)E(s) 

U(s)E(s)=KP+KIsU(s)E(s)=KP+KIs 

Therefore, the transfer function of proportional integral controller is KP+KIsKP+KIs. 

The block diagram of the unity negative feedback closed loop control system along with the proportional integral controller i s 

shown in the following figure. 



 

 
 

 
The proportional integral controller is used to decrease the steady state error without affecting the stability of the control system. 

Proportional Integral Derivative (PID) Controller 

The proportional integral derivative controller produces an output, which is the combination of the outputs of proportional, 

integral and derivative controllers. 

u(t)=KPe(t)+KI∫e(t)dt+KDde(t)dtu(t)=KPe(t)+KI∫e(t)dt+KDde(t)dt 

 
Apply Laplace transform on both sides - 

U(s)=(KP+KIs+KDs)E(s)U(s)=(KP+KIs+KDs)E(s) 

U(s)E(s)=KP+KIs+KDsU(s)E(s)=KP+KIs+KDs 

Therefore, the transfer function of the proportional integral derivative controller is KP+KIs+KDsKP+KIs+KDs. 

The block diagram of the unity negative feedback closed loop control system along with the proportional integral derivative 

controller is shown in the following figure. 

 

 

The proportional integral derivative controller is used to improve the stability of the control system and to decrease steady state 

error. 

Control Systems - State Space Model 
The state space model of Linear Time-Invariant (LTI) system can be represented as, 

X˙=AX+BUX˙=AX+BU 



Y=CX+DUY=CX+DU 

The first and the second equations are known as state equation and output equation respectively. 

Where, 

 X and X˙X˙ are the state vector and the differential state vector respectively. 

 U and Y are input vector and output vector respectively. 

 A is the system matrix. 

 B and C are the input and the output matrices. 

 D is the feed-forward matrix. 

Basic Concepts of State Space Model 

The following basic terminology involved in this chapter. 

 

State 

It is a group of variables, which summarizes the history of the system in order to predict the future values (outputs). 

 

State Variable 

The number of the state variables required is equal to the number of the storage elements present in the system. 

 
Examples − current flowing through inductor, voltage across capacitor 

 

State Vector 

It is a vector, which contains the state variables as elements. 

 
In the earlier chapters, we have discussed two mathematical models of the control systems. Those are the differential equation 

model and the transfer function model. The state space model can be obtained from any one of these two mathematical models. 

Let us now discuss these two methods one by one. 

State Space Model from Differential Equation 

Consider the following series of the RLC circuit. It is having an input voltage, vi(t)vi(t) and the current flowing through the 

circuit is i(t)i(t). 
 



There are two storage elements (inductor and capacitor) in this circuit. So, the number of the state variables is equal to two and 

these state variables are the current flowing through the inductor, i(t)i(t) and the voltage across capacitor, vc(t)vc(t). 

From the circuit, the output voltage, v0(t)v0(t) is equal to the voltage across capacitor, vc(t)vc(t). 

v0(t)=vc(t)v0(t)=vc(t) 

 

Apply KVL around the loop.  

vi(t)=Ri(t)+Ldi(t)dt+vc(t)vi(t)=Ri(t)+Ldi(t)dt+vc(t) 
 

⇒di(t)dt=−Ri(t)L−vc(t)L+vi(t)L⇒di(t)dt=−Ri(t)L−vc(t)L+vi(t)L 

 

The voltage across the capacitor is -  

vc(t)=1C∫i(t)dtvc(t)=1C∫i(t)dt 

 

Differentiate the above equation with respect to time. 

dvc(t)dt=i(t)Cdvc(t)dt=i(t)C 

 

State vector, X=[i(t)vc(t)]X=[i(t)vc(t)] 

Differential state vector, X˙=𝖥⎣di(t)dtdvc(t)dt⎤⎦X˙=[di(t)dtdvc(t)dt] 

We can arrange the differential equations and output equation into the standard form of state space model as, 

X˙=𝖥⎣di(t)dtdvc(t)dt⎤⎦=[−RL1C−1L0][i(t)vc(t)]+[1L0][vi(t)]X˙=[di(t)dtdvc(t)dt]=[−RL−1L1C0][i(t)vc(t)]+[1L0][vi(t)] 

Y=[01][i(t)vc(t)]Y=[01][i(t)vc(t)] 

Where,  

A=[−RL1C−1L0],B=[1L0],C=[01]andD=[0]A=[−RL−1L1C0],B=[1L0],C=[01]andD=[0] 
 

State Space Model from Transfer Function 

Consider the two types of transfer functions based on the type of terms present in the numerator. 

 
 Transfer function having constant term in Numerator. 

 Transfer function having polynomial function of ‘s’ in Numerator. 

Transfer function having constant term in Numerator 

Consider the following transfer function of a system 

Y(s)U(s)=b0sn+an−1sn−1+...+a1s+a0Y(s)U(s)=b0sn+an−1sn−1+...+a1s+a0 

 
Rearrange, the above equation as 

(sn+an−1sn−1+...+a0)Y(s)=b0U(s)(sn+an−1sn−1+...+a0)Y(s)=b0U(s) 

 
Apply inverse Laplace transform on both sides. 

dny(t)dtn+an−1dn−1y(t)dtn−1+...+a1dy(t)dt+a0y(t)=b0u(t)dny(t)dtn+an−1dn−1y(t)dtn−1+...+a1dy(t)dt+a0y(t)=b0u(t) 

 
Let 



y(t)=x1y(t)=x1 

dy(t)dt=x2=x˙1dy(t)dt=x2=x˙1 

d2y(t)dt2=x3=x˙2d2y(t)dt2=x3=x˙2 

.. 
 

.. 
 

.. 
 

dn−1y(t)dtn−1=xn=x˙n−1dn−1y(t)dtn−1=xn=x˙n−1 

dny(t)dtn=x˙ndny(t)dtn=x˙n 

and u(t)=uu(t)=u 

Then, 

x˙n+an−1xn+...+a1x2+a0x1=b0ux˙n+an−1xn+...+a1x2+a0x1=b0u 

 

From the above equation, we can write the following state equation. 

x˙n=−a0x1−a1x2−...−an−1xn+b0ux˙n=−a0x1−a1x2−...−an−1xn+b0u 

 

The output equation is -  

y(t)=y=x1y(t)=y=x1 

 

The state space model is - 

X˙=𝖥⎣⎢⎢⎢⎢⎢⎢⎢x˙1x˙2⋮x˙n−1x˙n⎤⎦⎥⎥⎥⎥⎥⎥⎥X˙=[x˙1x˙2⋮x˙n−1x˙n] 

=𝖥⎣⎢⎢⎢⎢⎢⎢⎢00⋮0−a010⋮0−a101⋮0−a2........................ 00⋮0−an−200⋮1−an−1⎤⎦⎥⎥⎥⎥⎥⎥⎥𝖥⎣⎢⎢⎢⎢⎢⎢⎢x1x2⋮xn−1xn⎤⎦⎥⎥⎥⎥⎥⎥⎥+𝖥⎣⎢⎢ 

⎢⎢⎢⎢⎢00⋮0b0⎤⎦⎥⎥⎥⎥⎥⎥⎥[u]=[010…00001…00⋮⋮⋮…⋮⋮000…01−a0−a1−a2…−an−2−an−1][x1x2⋮xn−1xn]+[00⋮0b0][u] 

 

Y=[10…00]𝖥⎣⎢⎢⎢⎢⎢⎢⎢x1x2⋮xn−1xn⎤⎦⎥⎥⎥⎥⎥⎥⎥Y=[10…00][x1x2⋮xn−1xn] 

 

Here, D=[0].D=[0]. 

Example 

Find the state space model for the system having transfer function. 

Y(s)U(s)=1s2+s+1Y(s)U(s)=1s2+s+1 

 

Rearrange, the above equation as,  

(s2+s+1)Y(s)=U(s)(s2+s+1)Y(s)=U(s) 

 

Apply inverse Laplace transform on both the sides. 

d2y(t)dt2+dy(t)dt+y(t)=u(t)d2y(t)dt2+dy(t)dt+y(t)=u(t) 

 
Let 



y(t)=x1y(t)=x1 

dy(t)dt=x2=x˙1dy(t)dt=x2=x˙1 

and u(t)=uu(t)=u 

Then, the state equation is 

 

 

x˙2=−x1−x2+ux˙2=−x1−x2+u 

 

The output equation is  

y(t)=y=x1y(t)=y=x1 

 

The state space model is 

X˙=[x˙1x˙2]=[0−11−1][x1x2]+[01][u]X˙=[x˙1x˙2]=[01−1−1][x1x2]+[01][u] 

Y=[10][x1x2]Y=[10][x1x2] 

Transfer function having polynomial function of ‘s’ in Numerator 

Consider the following transfer function of a system 

Y(s)U(s)=bnsn+bn−1sn−1+...+b1s+b0sn+an−1sn−1+...+a1s+a0Y(s)U(s)=bnsn+bn−1sn−1+...+b1s+b0sn+an−1sn−1+... 

+a1s+a0 

 

⇒Y(s)U(s)=(1sn+an−1sn−1+...+a1s+a0)(bnsn+bn−1sn−1+...+b1s+b0)⇒Y(s)U(s)=(1sn+an−1sn−1+...+a1s+a0)(bnsn+ 

bn−1sn−1+...+b1s+b0) 

 
The above equation is in the form of product of transfer functions of two blocks, which are cascaded. 

Y(s)U(s)=(V(s)U(s))(Y(s)V(s))Y(s)U(s)=(V(s)U(s))(Y(s)V(s)) 

 

Here,  

V(s)U(s)=1sn+an−1sn−1+...+a1s+a0V(s)U(s)=1sn+an−1sn−1+...+a1s+a0 

 

Rearrange, the above equation as 

(sn+an−1sn−1+...+a0)V(s)=U(s)(sn+an−1sn−1+...+a0)V(s)=U(s) 

 
Apply inverse Laplace transform on both the sides. 

dnv(t)dtn+an−1dn−1v(t)dtn−1+...+a1dv(t)dt+a0v(t)=u(t)dnv(t)dtn+an−1dn−1v(t)dtn−1+...+a1dv(t)dt+a0v(t)=u(t) 

 

Let  

v(t)=x1v(t)=x1 

dv((t)dt=x2=x˙1dv((t)dt=x2=x˙1 

d2v(t)dt2=x3=x˙2d2v(t)dt2=x3=x˙2 

.. 



.. 
 

.. 
 

dn−1v(t)dtn−1=xn=x˙n−1dn−1v(t)dtn−1=xn=x˙n−1 

dnv(t)dtn=x˙ndnv(t)dtn=x˙n 

and u(t)=uu(t)=u 

Then, the state equation is 

 

 

x˙n=−a0x1−a1x2−...−an−1xn+ux˙n=−a0x1−a1x2−...−an−1xn+u 

 

Consider,  

Y(s)V(s)=bnsn+bn−1sn−1+...+b1s+b0Y(s)V(s)=bnsn+bn−1sn−1+...+b1s+b0 

 

Rearrange, the above equation as 

Y(s)=(bnsn+bn−1sn−1+...+b1s+b0)V(s)Y(s)=(bnsn+bn−1sn−1+...+b1s+b0)V(s) 

 
Apply inverse Laplace transform on both the sides. 

y(t)=bndnv(t)dtn+bn−1dn−1v(t)dtn−1+...+b1dv(t)dt+b0v(t)y(t)=bndnv(t)dtn+bn−1dn−1v(t)dtn−1+...+b1dv(t)dt+b0v(t 

) 

 

By substituting the state variables and y(t)=yy(t)=y in the above equation, will get the output equation as, 

y=bnx˙n+bn−1xn+...+b1x2+b0x1y=bnx˙n+bn−1xn+...+b1x2+b0x1 

 

Substitute, x˙nx˙n value in the above equation. 

y=bn(−a0x1−a1x2−...−an−1xn+u)+bn−1xn+...+b1x2+b0x1y=bn(−a0x1−a1x2−...−an−1xn+u)+bn−1xn+...+b1x2+b0x1 

y=(b0−bna0)x1+(b1−bna1)x2+...+(bn−1−bnan−1)xn+bnuy=(b0−bna0)x1+(b1−bna1)x2+...+(bn−1−bnan−1)xn+bnu 

The state space model is 

X˙=𝖥⎣⎢⎢⎢⎢⎢⎢⎢x˙1x˙2⋮x˙n−1x˙n⎤⎦⎥⎥⎥⎥⎥⎥⎥X˙=[x˙1x˙2⋮x˙n−1x˙n] 

=𝖥⎣⎢⎢⎢⎢⎢⎢⎢00⋮0−a010⋮0−a101⋮0−a2 ........................ 00⋮0−an−200⋮1−an−1⎤⎦⎥⎥⎥⎥⎥⎥⎥𝖥⎣⎢⎢⎢⎢⎢⎢⎢x1x2⋮xn−1xn⎤⎦⎥⎥⎥⎥⎥⎥⎥+𝖥⎣⎢⎢ 

⎢⎢⎢⎢⎢00⋮0b0⎤⎦⎥⎥⎥⎥⎥⎥⎥[u]=[010…00001…00⋮⋮⋮…⋮⋮000…01−a0−a1−a2…−an−2−an−1][x1x2⋮xn−1xn]+[00⋮0b0][u] 

 

Y=[b0−bna0b1−bna1...bn−2−bnan−2bn−1−bnan−1]𝖥⎣⎢⎢⎢⎢⎢⎢⎢x1x2⋮xn−1xn⎤⎦⎥⎥⎥⎥⎥⎥⎥Y=[b0−bna0b1−bna1 . bn−2−bnan− 

2bn−1−bnan−1][x1x2⋮xn−1xn] 

 

If bn=0bn=0, then, 

Y=[b0b1...bn−2bn−1]𝖥⎣⎢⎢⎢⎢⎢⎢⎢x1x2⋮xn−1xn⎤⎦⎥⎥⎥⎥⎥⎥⎥Y=[b0b1. bn−2bn−1][x1x2⋮xn−1xn] 

 

Control Systems - State Space Analysis 
In the previous chapter, we learnt how to obtain the state space model from differential equation and transfer function. In this 

chapter, let us discuss how to obtain transfer function from the state space model. 



Transfer Function from State Space Model 

We know the state space model of a Linear Time-Invariant (LTI) system is - 

X˙=AX+BUX˙=AX+BU 

Y=CX+DUY=CX+DU 

Apply Laplace Transform on both sides of the state equation. 

sX(s)=AX(s)+BU(s)sX(s)=AX(s)+BU(s) 

 

⇒(sI−A)X(s)=BU(s)⇒(sI−A)X(s)=BU(s) 

 

⇒X(s)=(sI−A)−1BU(s)⇒X(s)=(sI−A)−1BU(s) 

 
Apply Laplace Transform on both sides of the output equation. 

Y(s)=CX(s)+DU(s)Y(s)=CX(s)+DU(s) 

 
Substitute, X(s) value in the above equation. 

⇒Y(s)=C(sI−A)−1BU(s)+DU(s)⇒Y(s)=C(sI−A)−1BU(s)+DU(s) 

 

⇒Y(s)=[C(sI−A)−1B+D]U(s)⇒Y(s)=[C(sI−A)−1B+D]U(s) 

 

⇒Y(s)U(s)=C(sI−A)−1B+D⇒Y(s)U(s)=C(sI−A)−1B+D 

 
The above equation represents the transfer function of the system. So, we can calculate the transfer function of the system by 

using this formula for the system represented in the state space model. 

Note − When D=[0]D=[0], the transfer function will be 

Y(s)U(s)=C(sI−A)−1BY(s)U(s)=C(sI−A)−1B 

 
Example 

 
Let us calculate the transfer function of the system represented in the state space model as, 

X˙=[x˙1x˙2]=[−11−10][x1x2]+[10][u]X˙=[x˙1x˙2]=[−1−110][x1x2]+[10][u] 

Y=[01][x1x2]Y=[01][x1x2] 

Here,  

A=[−11−10],B=[10],C=[01]andD=[0]A=[−1−110],B=[10],C=[01]andD=[0] 
 

The formula for the transfer function when D=[0]D=[0] is - 

Y(s)U(s)=C(sI−A)−1BY(s)U(s)=C(sI−A)−1B 

 
Substitute, A, B & C matrices in the above equation. 

Y(s)U(s)=[01][s+1−11s]−1[10]Y(s)U(s)=[01][s+11−1s]−1[10] 



⇒Y(s)U(s)=[01][s1−1s+1](s+1)s−1(−1)[10]⇒Y(s)U(s)=[01][s−11s+1](s+1)s−1(−1)[10] 

 

⇒Y(s)U(s)=[01][s1]s2+s+1=1s2+s+1⇒Y(s)U(s)=[01][s1]s2+s+1=1s2+s+1 

 
Therefore, the transfer function of the system for the given state space model is 

Y(s)U(s)=1s2+s+1Y(s)U(s)=1s2+s+1 

 

State Transition Matrix and its Properties 

If the system is having initial conditions, then it will produce an output. Since, this output is present even in the absence of 

input, it is called zero input response xZIR(t)xZIR(t). Mathematically, we can write it as, 

xZIR(t)=eAtX(0)=L−1{[sI−A]−1X(0)}xZIR(t)=eAtX(0)=L−1{[sI−A]−1X(0)} 

 

From the above relation, we can write the state transition matrix ϕ(t)ϕ(t) as 

ϕ(t)=eAt=L−1[sI−A]−1ϕ(t)=eAt=L−1[sI−A]−1 

 

So, the zero input response can be obtained by multiplying the state transition matrix ϕ(t)ϕ(t) with the initial conditions matrix. 

Following are the properties of the state transition matrix. 

 If t=0t=0, then state transition matrix will be equal to an Identity matrix. 

 
ϕ(0)=Iϕ(0)=I 

 
 Inverse of state transition matrix will be same as that of state transition matrix just by replcing ‘t’ by ‘-t’. 

 
ϕ−1(t)=ϕ(−t)ϕ−1(t)=ϕ(−t) 

 

 If t=t1+t2t=t1+t2 , then the corresponding state transition matrix is equal to the multiplication of the two state 

transition matrices at t=t1t=t1 and t=t2t=t2. 

 
ϕ(t1+t2)=ϕ(t1)ϕ(t2)ϕ(t1+t2)=ϕ(t1)ϕ(t2) 

Controllability and Observability 

Let us now discuss controllability and observability of control system one by one. 

 

Controllability 

A control system is said to be controllable if the initial states of the control system are transferred (changed) to some other 

desired states by a controlled input in finite duration of time. 

We can check the controllability of a control system by using Kalman’s test. 

 Write the matrix QcQc in the following form. 

 
Qc=[BABA2B...An−1B]Qc=[BABA2B...An−1B] 

 

 Find the determinant of matrix QcQc and if it is not equal to zero, then the control system is controllable. 

Observability 



A control system is said to be observable if it is able to determine the initial states of the control system by observing the 

outputs in finite duration of time. 

We can check the observability of a control system by using Kalman’s test. 

 Write the matrix QoQo in following form. 

 
Qo=[CTATCT(AT)2CT...(AT)n−1CT]Qo=[CTATCT(AT)2CT...(AT)n−1CT] 

 

 Find the determinant of matrix QoQo and if it is not equal to zero, then the control system is observable. 

Example 

 
Let us verify the controllability and observability of a control system which is represented in the state space model as, 

x˙=[x˙1x˙2]=[−11−10][x1x2]+[10][u]x˙=[x˙1x˙2]=[−1−110][x1x2]+[10][u] 

Y=[01][x1x2]Y=[01][x1x2] 

Here,  

A=[−11−10],B=[10],[01],D=[0]andn=2A=[−1−110],B=[10],[01],D=[0]andn=2 
 

For n=2n=2, the matrix QcQc will be 

Qc=[BAB]Qc=[BAB] 

 

We will get the product of matrices A and B as,  

AB=[−11]AB=[−11] 

 

⇒Qc=[10−11]⇒Qc=[1−101] 

 

|Qc|=1≠0|Qc|=1≠0 
 

Since the determinant of matrix QcQc is not equal to zero, the given control system is controllable. 

For n=2n=2, the matrix QoQo will be - 

Qo=[CTATCT]Qo=[CTATCT] 

 

Here,  

AT=[−1−110]andCT=[01]AT=[−11−10]andCT=[01] 
 

We will get the product of matrices ATAT and CTCT as 

ATCT=[10]ATCT=[10] 

 

⇒Qo=[0110]⇒Qo=[0110] 

 

⇒|Qo|=−1≠0⇒|Qo|=−1≠0 

 

Since, the determinant of matrix QoQo is not equal to zero, the given control system is observable. 

Therefore, the given control system is both controllable and observable. 



 

 

ROOT LOCUS 

The root locus is a graphical representation in s-domain and it is symmetrical about 

the real axis. Because the open loop poles and zeros exist in the s-domain having the 

values either as real or as complex conjugate pairs. In this chapter, let us discuss how 

to construct drawdraw the root locus. 
 

Rules for Construction of Root Locus 

 

Follow these rules for constructing a root locus. 
 

Rule 1 − Locate the open loop poles and zeros in the ‘s’ plane. 
 

Rule 2 − Find the number of root locus branches. 
 

We know that the root locus branches start at the open loop poles and end at open 

loop zeros. So, the number of root locus branches N is equal to the number of finite 

open loop poles P or the number of finite open loop zeros Z, whichever is greater. 
 

Mathematically, we can write the number of root locus branches N as 
 

N=PN=P if P≥ZP≥Z 

N=ZN=Z if P<ZP<Z 

Rule 3 − Identify and draw the real axis root locus branches. 
 

If the angle of the open loop transfer function at a point is an odd multiple of 1800, 

then that point is on the root locus. If odd number of the open loop poles and zeros 

exist to the left side of a point on the real axis, then that point is on the root locus 

branch. Therefore, the branch of points which satisfies this condition is the real axis of 

the root locus branch. 
 

Rule 4 − Find the centroid and the angle of asymptotes. 
 

 If P=ZP=Z, then all the root locus branches start at finite open loop poles and end 

at finite open loop zeros. 

 If P>ZP>Z , then ZZ number of root locus branches start at finite open loop poles 

and end at finite open loop zeros and P−ZP−Z number of root locus branches 

start at finite open loop poles and end at infinite open loop zeros. 



 If P<ZP<Z , then P number of root locus branches start at finite open loop poles 

and end at finite open loop zeros and Z−PZ−P number of root locus branches 

start at infinite open loop poles and end at finite open loop zeros. 
 

So, some of the root locus branches approach infinity, when P≠ZP≠Z. Asymptotes give 

the direction of these root locus branches. The intersection point of asymptotes on the 

real axis is known as centroid. 
 

We can calculate the centroid α by using this formula, 
 

α=∑Realpartoffiniteopenlooppoles−∑RealpartoffiniteopenloopzerosP−Zα=∑Realpartoffiniteopenlooppoles−∑Realpartoffiniteopenlo 

opzerosP−Z 

 

The formula for the angle of asymptotes θ is 
 

 
 

Where, 

θ=(2q+1)1800P−Zθ=(2q+1)1800P−Z 

 

q=0,1,2,....,(P−Z)−1q=0,1,2, ... ,(P−Z)−1 

 

Rule 5 − Find the intersection points of root locus branches with an imaginary axis. 
 

We can calculate the point at which the root locus branch intersects the imaginary axis 

and the value of K at that point by using the Routh array method and special case iiii. 
 

 If all elements of any row of the Routh array are zero, then the root locus 

branch intersects the imaginary axis and vice-versa. 

 Identify the row in such a way that if we make the first element as zero, then 

the elements of the entire row are zero. Find the value of K for this 

combination. 

 Substitute this K value in the auxiliary equation. You will get the intersection 

point of the root locus branch with an imaginary axis. 
 

Rule 6 − Find Break-away and Break-in points. 
 

 If there exists a real axis root locus branch between two open loop poles, then 

there will be a break-away point in between these two open loop poles. 

 If there exists a real axis root locus branch between two open loop zeros, then 

there will be a break-in point in between these two open loop zeros. 
 

Note − Break-away and break-in points exist only on the real axis root locus branches. 

Follow these steps to find break-away and break-in points. 



 Write KK in terms of ss from the characteristic equation 1+G(s)H(s)=01+G(s)H(s)=0. 
 Differentiate KK with respect to s and make it equal to zero. Substitute these 

values of ss in the above equation. 

 The values of ss for which the KK value is positive are the break points. 
 

Rule 7 − Find the angle of departure and the angle of arrival. 
 

The Angle of departure and the angle of arrival can be calculated at complex 

conjugate open loop poles and complex conjugate open loop zeros respectively. 
 

The formula for the angle of departure ϕdϕd is 
 

ϕd=1800−ϕϕd=1800−ϕ 

 

The formula for the angle of arrival ϕaϕa is 
 

 
 

Where, 

ϕa=1800+ϕϕa=1800+ϕ 

 

ϕ=∑ϕP−∑ϕZϕ=∑ϕP−∑ϕZ 

 
Example 

 

Let us now draw the root locus of the control system having open loop transfer 

function, G(s)H(s)=Ks(s+1)(s+5)G(s)H(s)=Ks(s+1)(s+5) 

 

Step 1 − The given open loop transfer function has three poles 

at s=0,s=−1s=0,s=−1 and s=−5s=−5. It doesn’t have any zero. Therefore, the number of root 

locus branches is equal to the number of poles of the open loop transfer function. 
 

N=P=3N=P=3 



 

 
 
 

The three poles are located are shown in the above figure. The line segment 

between s=−1s=−1 and s=0s=0 is one branch of root locus on real axis. And the other 

branch of the root locus on the real axis is the line segment to the left of s=−5s=−5. 
 

Step 2 − We will get the values of the centroid and the angle of asymptotes by using 

the given formulae. 
 

Centroid α=−2α=−2 

 

The angle of asymptotes are θ=600,1800θ=600,1800 and 30003000. 
 

The centroid and three asymptotes are shown in the following figure. 



 
 

Step 3 − Since two asymptotes have the angles of 600600 and 30003000, two root locus 

branches intersect the imaginary axis. By using the Routh array method and special 

caseiiii, the root locus branches intersects the imaginary axis at j5–√j5 and −j5–√−j5. 
 

There will be one break-away point on the real axis root locus branch between the 

poles s=−1s=−1and s=0s=0. By following the procedure given for the calculation of 

break-away point, we will get it as s=−0.473s=−0.473. 
 

The root locus diagram for the given control system is shown in the following figure. 



 
 

In this way, you can draw the root locus diagram of any control system and observe 

the movement of poles of the closed loop transfer function. 
 

From the root locus diagrams, we can know the range of K values for different types 

of damping. 
 

Effects of Adding Open Loop Poles and Zeros on Root Locus 

 

The root locus can be shifted in ‘s’ plane by adding the open loop poles and the open 

loop zeros. 
 

 If we include a pole in the open loop transfer function, then some of root locus 

branches will move towards right half of ‘s’ plane. Because of this, the 

damping ratio δδ decreases. Which implies, damped frequency ωdωd increases 

and the time domain specifications like delay time tdtd, rise time trtr and peak 

time tptp decrease. But, it effects the system stability. 

 If we include a zero in the open loop transfer function, then some of root locus 

branches will move towards left half of ‘s’ plane. So, it will increase the control 

system stability. In this case, the damping ratio δδ increases. Which implies, 

damped frequency ωdωd decreases and the time domain specifications like delay 

time tdtd, rise time trtr and peak time tptp increase. 



So, based on the requirement, we can include the open loop poles or zeros to the 

transfer function. 
 

UNIT 4 
 

FREQUENCY RESPONSE ANALYSIS 

The response of a system can be partitioned into both the transient response and the steady state 

response. We can find the transient response by using Fourier integrals. The steady state 

response of a system for an input sinusoidal signal is known as the frequency response. In this 

chapter, we will focus only on the steady state response. 

If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it 

produces the steady state output, which is also a sinusoidal signal. The input and output 

sinusoidal signals have the same frequency, but different amplitudes and phase angles. 

Let the input signal be − 

r(t)=Asin(ω0t)r(t)=Asin(ω0t) 

The open loop transfer function will be − 

G(s)=G(jω)G(s)=G(jω) 

We can represent G(jω)G(jω) in terms of magnitude and phase as shown below. 

G(jω)=|G(jω)|∠G(jω)G(jω)=|G(jω)|∠G(jω) 

Substitute, ω=ω0ω=ω0 in the above equation. 

G(jω0)=|G(jω0)|∠G(jω0)G(jω0)=|G(jω0)|∠G(jω0) 
 

The output signal is 

c(t)=A|G(jω0)|sin(ω0t+∠G(jω0))c(t)=A|G(jω0)|sin(ω0t+∠G(jω0)) 

 
 The amplitude of the output sinusoidal signal is obtained by multiplying the amplitude of the input sinusoidal signal 

and the magnitude of G(jω)G(jω) at ω=ω0ω=ω0. 

 The phase of the output sinusoidal signal is obtained by adding the phase of the input sinusoidal signal and the phase 

of G(jω)G(jω) at ω=ω0ω=ω0. 

Where, 

 A is the amplitude of the input sinusoidal signal. 

 ω0 is angular frequency of the input sinusoidal signal. 

We can write, angular frequency ω0ω0 as shown below. 

ω0=2πf0ω0=2πf0 

Here, f0 is the frequency of the input sinusoidal signal. Similarly, you can follow the same 

procedure for closed loop control system. 



Frequency Domain Specifications 
The frequency domain specifications are resonant peak, resonant frequency and bandwidth. 

Consider the transfer function of the second order closed loop control system as, 

T(s)=C(s)R(s)=ω2ns2+2δωns+ω2nT(s)=C(s)R(s)=ωn2s2+2δωns+ωn2 

Substitute, s=jωs=jω in the above equation. 

T(jω)=ω2n(jω)2+2δωn(jω)+ω2nT(jω)=ωn2(jω)2+2δωn(jω)+ωn2 

⇒T(jω)=ω2n−ω2+2jδωωn+ω2n=ω2nω2n(1−ω2ω2n+2jδωωn)⇒T(jω)=ωn2−ω2+2jδωωn+ωn2=ωn2ωn2(1−ω2ωn2+2 

jδωωn) 
 

⇒T(jω)=1(1−ω2ω2n)+j(2δωωn)⇒T(jω)=1(1−ω2ωn2)+j(2δωωn) 

Let, ωωn=uωωn=u Substitute this value in the above equation. 

T(jω)=1(1−u2)+j(2δu)T(jω)=1(1−u2)+j(2δu) 
 

Magnitude of T(jω)T(jω) is - 

M=|T(jω)|=1(1−u2)2+(2δu)2−−−−−−−−−−−−−−√M=|T(jω)|=1(1−u2)2+(2δu)2 

Phase of T(jω)T(jω) is - 

∠T(jω)=−tan−1(2δu1−u2)∠T(jω)=−tan−1(2δu1−u2) 

Resonant Frequency 

It is the frequency at which the magnitude of the frequency response has peak value for the first 

time. It is denoted by ωrωr. At ω=ωrω=ωr, the first derivate of the magnitude of T(jω)T(jω) is zero. 

Differentiate MM with respect to uu. 

dMdu=−12[(1−u2)2+(2δu)2]−32[2(1−u2)(−2u)+2(2δu)(2δ)]dMdu=−12[(1−u2)2+(2δu)2]−32[2(1−u2)(−2u)+2( 

2δu)(2δ)] 
 

⇒dMdu=−12[(1−u2)2+(2δu)2]−32[4u(u2−1+2δ2)]⇒dMdu=−12[(1−u2)2+(2δu)2]−32[4u(u2−1+2δ2)] 

Substitute, u=uru=ur and dMdu==0dMdu==0 in the above equation. 

0=−12[(1−u2r)2+(2δur)2]−32[4ur(u2r−1+2δ2)]0=−12[(1−ur2)2+(2δur)2]−32[4ur(ur2−1+2δ2)] 

⇒4ur(u2r−1+2δ2)=0⇒4ur(ur2−1+2δ2)=0 

⇒u2r−1+2δ2=0⇒ur2−1+2δ2=0 

⇒u2r=1−2δ2⇒ur2=1−2δ2 

⇒ur=1−2δ2−−−−−−√⇒ur=1−2δ2 

Substitute, ur=ωrωnur=ωrωn in the above equation. 

ωrωn=1−2δ2−−−−−−√ωrωn=1−2δ2 

⇒ωr=ωn1−2δ2−−−−−−√⇒ωr=ωn1−2δ2 



Resonant Peak 

It is the peak (maximum) value of the magnitude of T(jω)T(jω). It is denoted by MrMr. 

At u=uru=ur, the Magnitude of T(jω)T(jω) is - 

Mr=1(1−u2r)2+(2δur)2−−−−−−−−−−−−−−−√Mr=1(1−ur2)2+(2δur)2 

Substitute, ur=1−2δ2−−−−−−√ur=1−2δ2 and 1−u2r=2δ21−ur2=2δ2 in the above equation. 

Mr=1(2δ2)2+(2δ1−2δ2−−−−−−√)2−−−−−−−−−−−−−−−−−−√Mr=1(2δ2)2+(2δ1−2δ2)2 

⇒Mr=12δ1−δ2−−−−−√⇒Mr=12δ1−δ2 

Resonant peak in frequency response corresponds to the peak overshoot in the time domain 

transient response for certain values of damping ratio δδ. So, the resonant peak and peak 

overshoot are correlated to each other. 

Bandwidth 

It is the range of frequencies over which, the magnitude of T(jω)T(jω) drops to 70.7% from its 

zero frequency value. 

At ω=0ω=0, the value of uu will be zero. 

Substitute, u=0u=0 in M. 

M=1(1−02)2+(2δ(0))2−−−−−−−−−−−−−−−−√=1M=1(1−02)2+(2δ(0))2=1 

Therefore, the magnitude of T(jω)T(jω) is one at ω=0ω=0. 

At 3-dB frequency, the magnitude of T(jω)T(jω) will be 70.7% of magnitude 

of T(jω)T(jω) at ω=0ω=0. 

i.e., at ω=ωB,M=0.707(1)=12√ω=ωB,M=0.707(1)=12 

⇒M=12–√=1(1−u2b)2+(2δub)2−−−−−−−−−−−−−−−√⇒M=12=1(1−ub2)2+(2δub)2 

⇒2=(1−u2b)2+(2δ)2u2b⇒2=(1−ub2)2+(2δ)2ub2 
 

Let, u2b=xub2=x 

⇒2=(1−x)2+(2δ)2x⇒2=(1−x)2+(2δ)2x 

⇒x2+(4δ2−2)x−1=0⇒x2+(4δ2−2)x−1=0 
 

⇒x=−(4δ2−2)±(4δ2−2)2+4−−−−−−−−−−−√2⇒x=−(4δ2−2)±(4δ2−2)2+42 

Consider only the positive value of x. 

x=1−2δ2+(2δ2−1)2+1−−−−−−−−−−−√x=1−2δ2+(2δ2−1)2+1 

⇒x=1−2δ2+(2−4δ2+4δ4)−−−−−−−−−−−−√⇒x=1−2δ2+(2−4δ2+4δ4) 

Substitute, x=u2b=ω2bω2nx=ub2=ωb2ωn2 

ω2bω2n=1−2δ2+(2−4δ2+4δ4)−−−−−−−−−−−−√ωb2ωn2=1−2δ2+(2−4δ2+4δ4) 

⇒ωb=ωn1−2δ2+(2−4δ2+4δ4)−−−−−−−−−−−−√−−−−−−−−−−−−−−−−−−−−−−√⇒ωb=ωn1−2δ2+(2−4δ 

2+4δ4) 



Bandwidth ωbωb in the frequency response is inversely proportional to the rise time trtr in the 

time domain transient response. 

BODE PLOT 

The Bode plot or the Bode diagram consists of two plots − 

 
 Magnitude plot 

 Phase plot 

In both the plots, x-axis represents angular frequency (logarithmic scale). Whereas, yaxis 

represents the magnitude (linear scale) of open loop transfer function in the magnitude plot and 

the phase angle (linear scale) of the open loop transfer function in the phase plot. 

The magnitude of the open loop transfer function in dB is - 

M=20log|G(jω)H(jω)|M=20log|G(jω)H(jω)| 

The phase angle of the open loop transfer function in degrees is - 

ϕ=∠G(jω)H(jω)ϕ=∠G(jω)H(jω) 

Note − The base of logarithm is 10. 

Basic of Bode Plots 
The following table shows the slope, magnitude and the phase angle values of the terms present 

in the open loop transfer function. This data is useful while drawing the Bode plots. 
 

Type 

of 

term 

G(jω)H(jω) Slope(dB 

/dec) 

Magnitude (dB) Phase angle(degrees) 

 

Const 

ant 

KK 00 20logK20logK 00 

 

Zero 

at 

origin 

jωjω 2020 20logω20logω 9090 

 

‘n’ 

zeros 

at 

origin 

(jω)n(jω)n 20n20 

n 

20nlogω20nlogω 90n90n 

Pole 

at 

1jω1jω −20−2 

0 

−20logω−20logω −90or270−90or270 



 

origin 
    

 

‘n’ 

poles 

at 

origin 

1(jω)n1(jω)n −20n− 

20n 

−20nlogω−20nlogω −90nor270n−90nor27 

0n 

 

Simpl 

e zero 

1+jωr1+jωr 2020 0forω<1r0forω<1r 

20logωrforω>1r20logωrforω 

>1r 

0forω<1r0forω<1r 

90forω>1r90forω>1r 

 

Simpl 

e pole 

11+jωr11+jωr −20−2 

0 

0forω<1r0forω<1r 

−20logωrforω>1r−20logωrfo 

rω>1r 

0forω<1r0forω<1r 

−90or270forω>1r−90 

or270forω>1r 

 

Secon 

d 

order 

deriv 

ative 

term 

ω2n(1−ω2ω2n+2jδωωn)ωn2(1− 

ω2ωn2+2jδωωn) 

4040 40logωnforω<ωn40logωnforω 

<ωn 

20log(2δω2n)forω=ωn20log( 

2δωn2)forω=ωn 

40logωforω>ωn40logωforω>ω 

n 

0forω<ωn0forω<ωn 

90forω=ωn90forω=ωn 

180forω>ωn180forω> 

ωn 

 

Secon 

d 

order 

integr 

al 

term 

1ω2n(1−ω2ω2n+2jδωωn)1ωn2(1−ω2 

ωn2+2jδωωn) 

−40−4 

0 

−40logωnforω<ωn−40logωnfo 

rω<ωn 

−20log(2δω2n)forω=ωn−20lo 

g(2δωn2)forω=ωn 

−40logωforω>ωn−40logωfor 

ω>ωn 

−0forω<ωn−0forω<ωn 

−90forω=ωn−90forω= 

ωn 

−180forω>ωn−180for 

ω>ωn 

Consider the open loop transfer function G(s)H(s)=KG(s)H(s)=K. 

Magnitude M=20logKM=20logK dB 

Phase angle ϕ=0ϕ=0 degrees 

If K=1K=1, then magnitude is 0 dB. 

If K>1K>1, then magnitude will be positive. 

If K<1K<1, then magnitude will be negative. 

The following figure shows the corresponding Bode plot. 



 
The magnitude plot is a horizontal line, which is independent of frequency. The 0 dB line itself 

is the magnitude plot when the value of K is one. For the positive values of K, the horizontal 

line will shift 20logK20logK dB above the 0 dB line. For the negative values of K, the 

horizontal line will shift 20logK20logK dB below the 0 dB line. The Zero degrees line itself is 

the phase plot for all the positive values of K. 

Consider the open loop transfer function G(s)H(s)=sG(s)H(s)=s. 

Magnitude M=20logωM=20logω dB 

Phase angle ϕ=900ϕ=900 

At ω=0.1ω=0.1 rad/sec, the magnitude is -20 dB. 

At ω=1ω=1 rad/sec, the magnitude is 0 dB. 

At ω=10ω=10 rad/sec, the magnitude is 20 dB. 

The following figure shows the corresponding Bode plot. 



 
The magnitude plot   is a   line, which is having a slope of 20 dB/dec. This line started 

at ω=0.1ω=0.1 rad/sec having a magnitude of -20 dB and it continues on the same slope. It is 

touching 0 dB line at ω=1ω=1 rad/sec. In this case, the phase plot is 90
0
 line. 

Consider the open loop transfer function G(s)H(s)=1+sτG(s)H(s)=1+sτ. 

Magnitude M=20log1+ω2τ2−−−−−−−√M=20log1+ω2τ2 dB 

Phase angle ϕ=tan−1ωτϕ=tan−1ωτ degrees 

For ω<1τω<1τ , the magnitude is 0 dB and phase angle is 0 degrees. 

For ω>1τω>1τ , the magnitude is 20logωτ20logωτ dB and phase angle is 90
0
. 

The following figure shows the corresponding Bode plot. 



 

The magnitude plot is having magnitude of 0 dB upto ω=1τω=1τ rad/sec. From ω=1τω=1τ rad/sec, 

it is having a slope of 20 dB/dec. In this case, the phase plot is having phase angle of 0 degrees 

up to ω=1τω=1τ rad/sec and from here, it is having phase angle of 90
0
. This Bode plot is called 

the asymptotic Bode plot. 

As the magnitude and the phase plots are represented with straight lines, the Exact Bode plots 

resemble the asymptotic Bode plots. The only difference is that the Exact Bode plots will have 

simple curves instead of straight lines. 

Similarly, you can draw the Bode plots for other terms of the open loop transfer function which 

are given in the table. 

Rules for Construction of Bode Plots 
Follow these rules while constructing a Bode plot. 

 Represent the open loop transfer function in the standard time constant form. 

 Substitute, s=jωs=jω in the above equation. 

 Find the corner frequencies and arrange them in ascending order. 

 Consider the starting frequency of the Bode plot as 1/10th of the minimum corner frequency or 0.1 rad/sec whichever is 

smaller value and draw the Bode plot upto 10 times maximum corner frequency. 



 Draw the magnitude plots for each term and combine these plots properly. 

 Draw the phase plots for each term and combine these plots properly. 

Note − The corner frequency is the frequency at which there is a change in the slope of the 

magnitude plot. 

Example 

Consider the open loop transfer function of a closed loop control system 

G(s)H(s)=10s(s+2)(s+5)G(s)H(s)=10s(s+2)(s+5) 

Let us convert this open loop transfer function into standard time constant form. 

G(s)H(s)=10s2(s2+1)5(s5+1)G(s)H(s)=10s2(s2+1)5(s5+1) 

⇒G(s)H(s)=s(1+s2)(1+s5)⇒G(s)H(s)=s(1+s2)(1+s5) 

So, we can draw the Bode plot in semi log sheet using the rules mentioned earlier. 

Stability Analysis using Bode Plots 
From the Bode plots, we can say whether the control system is stable, marginally stable or 

unstable based on the values of these parameters. 

 
 Gain cross over frequency and phase cross over frequency 

 Gain margin and phase margin 

Phase Cross over Frequency 

The frequency at which the phase plot is having the phase of -180
0
 is known as phase cross 

over frequency. It is denoted by ωpcωpc. The unit of phase cross over frequency is rad/sec. 

Gain Cross over Frequency 

The frequency at which the magnitude plot is having the magnitude of zero dB is known as gain 

cross over frequency. It is denoted by ωgcωgc. The unit of gain cross over frequency is rad/sec. 

The stability of the control system based on the relation between the phase cross over frequency 

and the gain cross over frequency is listed below. 

 If the phase cross over frequency ωpcωpc is greater than the gain cross over frequency ωgcωgc, then the control 

system is stable. 

 If the phase cross over frequency ωpcωpc is equal to the gain cross over frequency ωgcωgc, then the control system 

is marginally stable. 

 If the phase cross over frequency ωpcωpc is less than the gain cross over frequency ωgcωgc, then the control system 

is unstable. 

Gain Margin 

Gain margin GMGM is equal to negative of the magnitude in dB at phase cross over frequency. 

GM=20log(1Mpc)=20logMpcGM=20log(1Mpc)=20logMpc 



Where, MpcMpc is the magnitude at phase cross over frequency. The unit of gain margin (GM) 

is dB. 

Phase Margin 

The formula for phase margin PMPM is 

PM=1800+ϕgcPM=1800+ϕgc 

Where, ϕgcϕgc is the phase angle at gain cross over frequency. The unit of phase margin 

is degrees. 

The stability of the control system based on the relation between gain margin and phase margin 

is listed below. 

 If both the gain margin GMGM and the phase margin PMPM are positive, then the control system is stable. 

 If both the gain margin GMGM and the phase margin PMPM are equal to zero, then the control system 

is marginally stable. 

 If the gain margin GMGM and / or the phase margin PMPM are/is negative, then the control system is unstable. 

 

POLAR PLOT 

In the previous chapters, we discussed the Bode plots. There, we have two separate plots for 

both magnitude and phase as the function of frequency. Let us now discuss about polar plots. 

Polar plot is a plot which can be drawn between magnitude and phase. Here, the magnitudes are 

represented by normal values only. 

The polar form of G(jω)H(jω)G(jω)H(jω) is 

G(jω)H(jω)=|G(jω)H(jω)|∠G(jω)H(jω)G(jω)H(jω)=|G(jω)H(jω)|∠G(jω)H(jω) 

The Polar plot is a plot, which can be drawn between the magnitude and the phase angle 

of G(jω)H(jω)G(jω)H(jω) by varying ωω from zero to ∞. The polar graph sheet is shown in the 

following figure. 



 

This graph sheet consists of concentric circles and radial lines. The concentric circles and 

the radial lines represent the magnitudes and phase angles respectively. These angles are 

represented by positive values in anti-clock wise direction. Similarly, we can represent angles 

with negative values in clockwise direction. For example, the angle 270
0
 in anti-clock wise 

direction is equal to the angle −90
0
 in clockwise direction. 

Rules for Drawing Polar Plots 
Follow these rules for plotting the polar plots. 

 Substitute, s=jωs=jω in the open loop transfer function. 

 Write the expressions for magnitude and the phase of G(jω)H(jω)G(jω)H(jω). 

 Find the starting magnitude and the phase of G(jω)H(jω)G(jω)H(jω) by substituting ω=0ω=0. So, the polar plot 

starts with this magnitude and the phase angle. 

 Find the ending magnitude and the phase of G(jω)H(jω)G(jω)H(jω) by substituting ω=∞ω=∞. So, the polar plot 

ends with this magnitude and the phase angle. 

 Check whether the polar plot intersects the real axis, by making the imaginary term 

of G(jω)H(jω)G(jω)H(jω) equal to zero and find the value(s) of ωω. 



 Check whether the polar plot intersects the imaginary axis, by making real term of G(jω)H(jω)G(jω)H(jω) equal to 

zero and find the value(s) of ωω. 

 For drawing polar plot more clearly, find the magnitude and phase of G(jω)H(jω)G(jω)H(jω) by considering the 

other value(s) of ωω. 

Example 

Consider the open loop transfer function of a closed loop control system. 

G(s)H(s)=5s(s+1)(s+2)G(s)H(s)=5s(s+1)(s+2) 

Let us draw the polar plot for this control system using the above rules. 

Step 1 − Substitute, s=jωs=jω in the open loop transfer function. 

G(jω)H(jω)=5jω(jω+1)(jω+2)G(jω)H(jω)=5jω(jω+1)(jω+2) 

The magnitude of the open loop transfer function is 

M=5ω(ω2+1−−−−−√)(ω2+4−−−−−√)M=5ω(ω2+1)(ω2+4) 

The phase angle of the open loop transfer function is 

ϕ=−900−tan−1ω−tan−1ω2ϕ=−900−tan−1ω−tan−1ω2 

Step 2 − The following table shows the magnitude and the phase angle of the open loop transfer 

function at ω=0ω=0 rad/sec and ω=∞ω=∞ rad/sec. 

Frequency (rad/sec) Magnitude Phase angle(degrees) 

0 ∞ -90 or 270 

∞ 0 -270 or 90 

So, the polar plot starts at (∞,−90
0
) and ends at (0,−270

0
). The first and the second terms within 

the brackets indicate the magnitude and phase angle respectively. 

Step 3 − Based on the starting and the ending polar co-ordinates, this polar plot will intersect 

the negative real axis. The phase angle corresponding to the negative real axis is −180
0
 or 180

0
. 

So, by equating the phase angle of the open loop transfer function to either −180
0
 or 180

0
, we 

will get the ωω value as 2–√2. 

By substituting ω=2–√ω=2 in the magnitude of the open loop transfer   function, we will 

get M=0.83M=0.83. Therefore, the polar plot intersects the negative real axis when ω=2– 

√ω=2 and the polar coordinate is (0.83,−180
0
). 

So, we can draw the polar plot with the above information on the polar graph sheet. 

NYQUIST PLOT 



Nyquist plots are the continuation of polar plots for finding the stability of the closed loop 

control systems by varying ω from −∞ to ∞. That means, Nyquist plots are used to draw the 

complete frequency response of the open loop transfer function. 

Nyquist Stability Criterion 
The Nyquist stability criterion works on the principle of argument. It states that if there are P 

poles and Z zeros   are   enclosed   by   the   ‘s’   plane   closed   path,   then   the 

corresponding G(s)H(s)G(s)H(s) plane must encircle the origin P−ZP−Ztimes. So, we can write 

the number of encirclements N as, 

N=P−ZN=P−Z 

 
 If the   enclosed   ‘s’   plane   closed   path   contains   only   poles,   then   the   direction   of   the   encirclement   in 

the G(s)H(s)G(s)H(s) plane will be opposite to the direction of the enclosed closed path in the ‘s’ plane. 

 If the   enclosed   ‘s’   plane   closed   path   contains   only   zeros,   then   the   direction   of   the   encirclement   in 

the G(s)H(s)G(s)H(s) plane will be in the same direction as that of the enclosed closed path in the ‘s’ plane. 

Let us now apply the principle of argument to the entire right half of the ‘s’ plane by selecting it 

as a closed path. This selected path is called the Nyquistcontour. 

We know that the closed loop control system is stable if all the poles of the closed loop transfer 

function are in the left half of the ‘s’ plane. So, the poles of the closed loop transfer function are 

nothing but the roots of the characteristic equation. As the order of the characteristic equation 

increases, it is difficult to find the roots. So, let us correlate these roots of the characteristic 

equation as follows. 

 The Poles of the characteristic equation are same as that of the poles of the open loop transfer function. 

 The zeros of the characteristic equation are same as that of the poles of the closed loop transfer function. 

We know that the open loop control system is stable if there is no open loop pole in the the right 

half of the ‘s’ plane. 

i.e.,P=0⇒N=−ZP=0⇒N=−Z 

We know that the closed loop control system is stable if there is no closed loop pole in the right 

half of the ‘s’ plane. 

i.e.,Z=0⇒N=PZ=0⇒N=P 

Nyquist stability criterion states the number of encirclements about the critical point (1+j0) 

must be equal to the poles of characteristic equation, which is nothing but the poles of the open 

loop transfer function in the right half of the ‘s’ plane. The shift in origin to (1+j0) gives the 

characteristic equation plane. 

Rules for Drawing Nyquist Plots 
Follow these rules for plotting the Nyquist plots. 

 Locate the poles and zeros of open loop transfer function G(s)H(s)G(s)H(s) in ‘s’ plane. 



 Draw the polar plot by varying ωω from zero to infinity. If pole or zero present at s = 0, then varying ωω from 0+ to 

infinity for drawing polar plot. 

 Draw the mirror image of above polar plot for values of ωω ranging from −∞ to zero (0− if any pole or zero present at 

s=0). 

 The number of infinite radius half circles will be equal to the number of poles or zeros at origin. The infinite radius 

half circle will start at the point where the mirror image of the polar plot ends. And this infinite radius half circle will 

end at the point where the polar plot starts. 

After drawing the Nyquist plot, we can find the stability of the closed loop control system using 

the Nyquist stability criterion. If the critical point (-1+j0) lies outside the encirclement, then the 

closed loop control system is absolutely stable. 

Stability Analysis using Nyquist Plots 
From the Nyquist plots, we can identify whether the control system is stable, marginally stable 

or unstable based on the values of these parameters. 

 
 Gain cross over frequency and phase cross over frequency 

 Gain margin and phase margin 

Phase Cross over Frequency 

The frequency at which the Nyquist plot intersects the negative real axis (phase angle is 180
0
) is 

known as the phase cross over frequency. It is denoted by ωpcωpc. 

Gain Cross over Frequency 

The frequency at which the Nyquist plot is having the magnitude of one is known as the gain 

cross over frequency. It is denoted by ωgcωgc. 

The stability of the control system based on the relation between phase cross over frequency 

and gain cross over frequency is listed below. 

 If the phase cross over frequency ωpcωpc is greater than the gain cross over frequency ωgcωgc, then the control 

system is stable. 

 If the phase cross over frequency ωpcωpc is equal to the gain cross over frequency ωgcωgc, then the control system 

is marginally stable. 

 If phase cross over frequency ωpcωpc is less than gain cross over frequency ωgcωgc, then the control system 

is unstable. 

Gain Margin 

The gain margin GMGM is equal to the reciprocal of the magnitude of the Nyquist plot at the 

phase cross over frequency. 

GM=1MpcGM=1Mpc 

Where, MpcMpc is the magnitude in normal scale at the phase cross over frequency. 

Phase Margin 

The phase margin PMPM is equal to the sum of 180
0
 and the phase angle at the gain cross over 

frequency. 



PM=1800+ϕgcPM=1800+ϕgc 

Where, ϕgcϕgc is the phase angle at the gain cross over frequency. 

The stability of the control system based on the relation between the gain margin and the phase 

margin is listed below. 

 If the gain margin GMGM is greater than one and the phase margin PMPMis positive, then the control system 

is stable. 

 If the gain margin GMGM is equal to one and the phase margin PMPM is zero degrees, then the control system 

is marginally stable. 

 If the gain margin GMGM is less than one and / or the phase margin PMPMis negative, then the control system 

is unstable. 

 

 

CONTROL SYSTEMS – COMPENSATORS 

There are three types of compensators — lag, lead and lag-lead compensators. These are most 

commonly used. 

Lag Compensator 
The Lag Compensator is an electrical network which produces a sinusoidal output having the 

phase lag when a sinusoidal input is applied. The lag compensator circuit in the ‘s’ domain is 

shown in the following figure. 
 
 

 
Here, the capacitor is in series with the resistor R2R2 and the output is measured across this 

combination. 

The transfer function of this lag compensator is - 

Vo(s)Vi(s)=1α(s+1τs+1ατ)Vo(s)Vi(s)=1α(s+1τs+1ατ) 
 

Where, 



τ=R2Cτ=R2C 

α=R1+R2R2α=R1+R2R2 

From the above equation, αα is always greater than one. 

From the transfer function, we   can conclude   that the   lag   compensator   has   one   pole 

at s=−1ατs=−1ατ and one zero at s=−1τs=−1τ . This means, the pole will be nearer to origin in the 

pole-zero configuration of the lag compensator. 

Substitute, s=jωs=jω in the transfer function. 

Vo(jω)Vi(jω)=1α(jω+1τjω+1ατ)Vo(jω)Vi(jω)=1α(jω+1τjω+1ατ) 

Phase angle ϕ=tan−1ωτ−tan−1αωτϕ=tan−1ωτ−tan−1αωτ 

We know that, the phase of the output sinusoidal signal is equal to the sum of the phase angles 

of input sinusoidal signal and the transfer function. 

So, in order to produce the phase lag at the output of this compensator, the phase angle of the 

transfer function should be negative. This will happen when α>1α>1. 

Lead Compensator 
The lead compensator is an electrical network which produces a sinusoidal output having phase 

lead when a sinusoidal input is applied. The lead compensator circuit in the ‘s’ domain is shown 

in the following figure. 

 

Here, the capacitor is parallel to the resistor R1R1 and the output is measured across resistor 

$R_2. 

The transfer function of this lead compensator is - 

Vo(s)Vi(s)=β(sτ+1βsτ+1)Vo(s)Vi(s)=β(sτ+1βsτ+1) 
 

Where, 

τ=R1Cτ=R1C 



β=R2R1+R2β=R2R1+R2 

From   the   transfer function, we   can   conclude   that   the lead compensator has pole 

at s=−1βs=−1β and zero at s=−1βτs=−1βτ. 

Substitute, s=jωs=jω in the transfer function. 
Vo(jω)Vi(jω)=β(jωτ+1βjωτ+1)Vo(jω)Vi(jω)=β(jωτ+1βjωτ+1) 

Phase angle ϕ=tan−1ωτ−tan−1βωτϕ=tan−1ωτ−tan−1βωτ 

We know that, the phase of the output sinusoidal signal is equal to the sum of the phase angles 

of input sinusoidal signal and the transfer function. 

So, in order to produce the phase lead at the output of this compensator, the phase angle of the 

transfer function should be positive. This will happen when 0<β<10<β<1. Therefore, zero will be 

nearer to origin in pole-zero configuration of the lead compensator. 

Lag-Lead Compensator 
Lag-Lead compensator is an electrical network which produces phase lag at one frequency 

region and phase lead at other frequency region. It is a combination of both the lag and the lead 

compensators. The lag-lead compensator circuit in the ‘s’ domain is shown in the following 

figure. 
 

 

This circuit looks like both the compensators are cascaded. So, the transfer function of this 

circuit will be the product of transfer functions of the lead and the lag compensators. 

Vo(s)Vi(s)=β(sτ1+1βsτ1+1)1α(s+1τ2s+1ατ2)Vo(s)Vi(s)=β(sτ1+1βsτ1+1)1α(s+1τ2s+1ατ2) 

We know αβ=1αβ=1. 

⇒Vo(s)Vi(s)=(s+1τ1s+1βτ1)(s+1τ2s+1ατ2)⇒Vo(s)Vi(s)=(s+1τ1s+1βτ1)(s+1τ2s+1ατ2) 



Where, 

τ1=R1C1τ1=R1C1 

τ2=R2C2 

 
 

UNIT 5 

CONTROL SYSTEMS - STATE SPACE MODEL 

 
 

The state space model of Linear Time-Invariant (LTI) system can be represented as, 

X˙=AX+BUX˙=AX+BU 

Y=CX+DUY=CX+DU 

The first and the second equations are known as state equation and output equation respectively. 

Where, 

 X and X˙X˙ are the state vector and the differential state vector respectively. 

 U and Y are input vector and output vector respectively. 

 A is the system matrix. 

 B and C are the input and the output matrices. 

 D is the feed-forward matrix. 

Basic Concepts of State Space Model 
The following basic terminology involved in this chapter. 

State 

It is a group of variables, which summarizes the history of the system in order to predict the 

future values (outputs). 

State Variable 

The number of the state variables required is equal to the number of the storage elements 

present in the system. 

Examples − current flowing through inductor, voltage across capacitor 

State Vector 

It is a vector, which contains the state variables as elements. 



In the earlier chapters, we have discussed two mathematical models of the control systems. 

Those are the differential equation model and the transfer function model. The state space 

model can be obtained from any one of these two mathematical models. Let us now discuss 

these two methods one by one. 

State Space Model from Differential Equation 
Consider the following series of the RLC circuit. It is having an input voltage, vi(t)vi(t) and the 

current flowing through the circuit is i(t)i(t). 
 

There are two storage elements (inductor and capacitor) in this circuit. So, the number of the 

state variables is equal to two and these state variables are the current flowing through the 

inductor, i(t)i(t) and the voltage across capacitor, vc(t)vc(t). 

From the circuit, the output voltage, v0(t)v0(t) is equal to the voltage across capacitor, vc(t)vc(t). 

v0(t)=vc(t)v0(t)=vc(t) 
 

Apply KVL around the loop. 

vi(t)=Ri(t)+Ldi(t)dt+vc(t)vi(t)=Ri(t)+Ldi(t)dt+vc(t) 

⇒di(t)dt=−Ri(t)L−vc(t)L+vi(t)L⇒di(t)dt=−Ri(t)L−vc(t)L+vi(t)L 

The voltage across the capacitor is - 

vc(t)=1C∫i(t)dtvc(t)=1C∫i(t)dt 

Differentiate the above equation with respect to time. 

dvc(t)dt=i(t)Cdvc(t)dt=i(t)C 
 

State vector, X=[i(t)vc(t)]X=[i(t)vc(t)] 

Differential state vector, X˙=𝖥⎣di(t)dtdvc(t)dt⎤⎦X˙=[di(t)dtdvc(t)dt] 

We can arrange the differential equations and output equation into the standard form of state 

space model as, 

X˙=𝖥⎣di(t)dtdvc(t)dt⎤⎦=[−RL1C−1L0][i(t)vc(t)]+[1L0][vi(t)]X˙=[di(t)dtdvc(t)dt]=[−RL−1L1C0][i(t)vc(t)]+[1L0][vi(t 

)] 
 

Y=[01][i(t)vc(t)]Y=[01][i(t)vc(t)] 



Where, 

A=[−RL1C−1L0],B=[1L0],C=[01]andD=[0]A=[−RL−1L1C0],B=[1L0],C=[01]andD=[0] 
 

State Space Model from Transfer Function 
Consider the two types of transfer functions based on the type of terms present in the numerator. 

 
 Transfer function having constant term in Numerator. 

 Transfer function having polynomial function of ‘s’ in Numerator. 

Transfer function having constant term in Numerator 

Consider the following transfer function of a system 

Y(s) 
= b0 

 

U(s) sn+an−1sn−1+...+a1s+a0 
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Transfer Function from State Space Model 
We know the state space model of a Linear Time-Invariant (LTI) system is - 

X˙=AX+BUX˙=AX+BU 

Y=CX+DUY=CX+DU 

Apply Laplace Transform on both sides of the state equation. 

sX(s)=AX(s)+BU(s)sX(s)=AX(s)+BU(s) 

⇒(sI−A)X(s)=BU(s)⇒(sI−A)X(s)=BU(s) 

⇒X(s)=(sI−A)−1BU(s)⇒X(s)=(sI−A)−1BU(s) 

Apply Laplace Transform on both sides of the output equation. 

Y(s)=CX(s)+DU(s)Y(s)=CX(s)+DU(s) 

Substitute, X(s) value in the above equation. 

⇒Y(s)=C(sI−A)−1BU(s)+DU(s)⇒Y(s)=C(sI−A)−1BU(s)+DU(s) 

⇒Y(s)=[C(sI−A)−1B+D]U(s) 

 

 
The above equation represents the transfer function of the system. So, we can calculate the 

transfer function of the system by using this formula for the system represented in the state 

space model. 

Note − When D=[0]D=[0], the transfer function will be 
 

 
 



 
 
 



 

 



 

 
 
 

 



SOLLUTION 

 

 



 


